

REAL THINGS IN NATURE

Real Things in Nature

A READING BOOK OF SCIENCA FOR AMERICAN BOYS AND UIRESR

Hx
FIDWARD S. HOHIDN, SED. IX.D.

Copyright, 1903

By THF MACMILLAN COMPANY

Set up and elektotyped, January, :003 Ruprintud, November, 1903; March, r004; November, 1905; July, sout, Warch, 1007 ; Novembet, 1907; Fobruary, ro08; Ausust, MnN"; Acevember,
 10is; February, 194; June, 1914; July, 1915 May, 1)l6. June, 1916.

PREFACI

The immediate object of this volume is to present to young children a view of the world which shall be, in its degree, complete, useful and interesting.

An American lad of a dozen years of age has had training at home and at school; he has observed the world for himself, and has proficed more or less by the experience of his fellows. He has ideas upon many subjects; he is fobrming habits of thought that will be of the greatest oinsequence to others and to himself in the future. "He is just at the time of life when his mind is open tw direction, and is eager for explanations of the world in which he lives. He is full of questions. The various parts of this volume give the answers to such questions.

For example : the American school boy is familiar with railways, electric lights, the telegraph, the teiephone, etc. He has many questions ask concerning them, and concerning the machines that he sees in daily use -- the lever, the balance, etc. The answers are given in the book on Physics.

Every American boy is interésted in the habits of animals and has met in his own experiencemany instances of their intelligence. He listens with interest to accounts of their social organizations,
and to explanations of their adaptations to environm ment and circumstance.
4t is not possible to give complete e..planations; Witt it is not difficult to have the explanations complete so far as they go. He will have nothing to unlearn in the future; on the foundations here laid in these and other subjects he can go as lar as he likesum din wientific ideas are entirely too difficult to mationsed by roung miuds. It is better to omit some topics altogether than to present a set of words which can have no vital meaning. Very much of chemintry, fopexample. is above the capacity of young puptoky that cat be cione is to present a
 simple and safe exprimints and to loave the rest of the science untouched.

It is the fundamental ideas of scieber and its mothods that are here insisted urcia: itn fucts are of importance chiefly as illustriation its mode of thought. The methods of astronomy, of geology, of chemistry, for example, are very different. The answers to the questions: How do you know that the stars are self-luminous? How is it proved that water is compound? How is the age of the Earth determined? are reached by very different paths. It is of the first importance that the pupil shouldknow how his elders set about to prove such things. He should carry away from his reading an intimate conviction that such answers have
malia, etc., he unders'ands what he has studied. There is no better test.

There can, of course, be no originality in the sut ject matter of an elementary book of this sort. The chief merit which can be hoped for is a clear presentation of well-known facts. It is possible to make great subjects interesting to both teachethed pupil, even where they must be treated with e conciseness. If, as is hoped, this has becy volume should he of value. If Americal ${ }^{2}$, and maintain a foremost place in the word, it can only be done through the predominance of certain qualities in its citizens that scientifige gation fosters to a very important degree. Wix wiot afford to neglect any means of developing ev whess and faithfulness in the performance of in who who will soon be the responsible governors of ourcountry.

Every year thousands of chidren leave the public schools to begin life for themselves. Only a small percentage enter high schools, and a very mach smaller percentage enter colleges. It is the duty of the common schools to prepare their graduates as fully as possible for the busincss of lite. Theys must be thoroughly grounded in the elements o knowledge. What more can be done under the cin* cumstances? Some of the workings of the world around them can be explained. They can be made to understand the fundamental notions of government, law, history; science. They can be taught: to reflect on what they see and hear.

It is believed that a book like the present volume in the hands of the zealous and intelligent teachers f the country will be a suggestive help in all these matters. Under the most favorable conditions the pupil whethave been taught what it contains in his own home. In many cases he must depend upon formal instruction at school. To aid formal instruction of this sort, to systematize it, is the main o \& owe book. Its ultimate purpose is fully exprowed in the introduction that follows.
U. S. Milithey Academy, West Ponvy, New York, June 17, 1yoz.

TO MY Y(UNG FRURND
KATHakINE TILLMAN
really been found. and that, on the whole, 敛 knows how it was done, although he may not know all the details of the processes.

The experiments here described are, with very few exc iptions, such as can be performed by the teacher in the class-room or by the pupil at home. In genera, it is a mere waste of words to descrihe an experiment that requires complex apparatus which the pupil wili never see except in the figures of his test-brok. Simple experiments are here suggested, and the pupil is reminded of verifications that he himself can make by the word (try it) --which occur very frequently in this text.

The main ubject is to teach ideas. Technical words are aroided so tar as possible, At he same time technical terms have been x, "tingly cuployed when they are ssentiaty for when they are such as will be constantatw , With hereafter. It is necessary to say prateream, for in. stance; there is no royal road round it.

The book is designeal to supplement the instrysfion which the pupil has gained from other textbooks and to carry it further, accordinmbo a symmetric plan. It is occasionally nece to trat subjects here that have already been 's . ed by the child in his Geography, History, etc. ; folt it will be found that the old topics are approached in new ways, so that there is no real loss of energy or time.
cimetimes the same topic has been treated twice, from two different points' of view, in two different sections of the book. New relations of familiar things are thus disclosed; and this method would have been followed oftener had the limits of space permitted.

The illustrations have been carefully chosen, usually from books pubished by the Macmillan Company, especially : Huxley's Physiology, Bailey's Botany and Lessons on Plants, Davenport's Zoollogy, McMurry \& Tarr's Geography, Tarr's Geology and Physical Geography, etc., etc. To these and other authorities the writer's obligations are gratefully acknowledged.

The titles the cuts are usually given in two parts: firsty thort title which the pupil will remember; cknct a longer explanation which makes the complete in itself and saves a reference to the texts. The pictures in the book, with thear titles, constitute an abstract of the whole work.
n the book is used in the class-room the pupil $\mathrm{s}^{\text {. De instructed to point, with a long pin, at }}$ each partigh cut as he reads its explanation in the title
a cift in the book is understood the pupil should, in many cases, be required to draw it from memory. If wan reproduce such cuts as those giving the ${ }^{2}$ f shadows, the connections of an electric beworm genealogical tree of the mam-

INTRODUCTION.

(TO BE READ BY THE CHILDREN WHO OWN THIS BOok.)

The children who read this book ought to know before they read it what use it is going to be to them. Let us see. The book is owned by an American school boy (or school girl) who was born ten or twelye years ago and who expects to live in this world fifty or sixty years more. Fifty years is a very long time - think of all the things that have happened in the last fifly years-quid then think forward what may happen in the ofet fifty years -things that may happen in the Woxd, in this our country, or to you.

Suppose that we could make things happen by merely wishing them, what would you and I for the whole world? We should begin by that there might be peace and plenty-no wars, no famines, plenty of work for all of us, a chance for every one, and a wish in every one to do hists What we desire for the whole world in getaral, we particularly wish for our own country. We hope its future will be peaceful, thithere will be no quarrels or wars, that everympyenn always. find work to do, that every one y f us will wish to
work and will do his work faithfrally and cheerfully.
Your best friend will wish the same thing for you that we have wished for the country. He will wish that your whole life shall be peaceful and happy, that whenever you nued money for yourself or for your family and friends you can find plenty of well-paid work to do and that you will wish to do it faithfully and with all your might, that you will always try to do the righe and useful thing cheerfully.

If these wishne come trut you will lead a happy life, you wil be aseful to your country; and if all the su hool children are like that, your country will be useful to the whole world and honored everywhere. Something depends on you, then; you can be useful to your friends and family and country if you will try : and if you try, you will be happy yourself. If enough of us try we can make the country useful to the whole world. But we must try in the right way; we must know what to - and ho
ye mu
and understand is like trying to work in the dark. The better you understand the reasons, the better work you can do, and the happicr you will be in bintry it.
Wher instance, just suppose that one of the boys in a school grows up to be the engineer of a locove. All engineers understand their business very well, but some understand it a little better than
others. Any engineer can run his engine safely so long as all the machinery works well. Some day, in spite of wetyihing, there is danger of an accident. The man that knows his business best is most likely to take his train safe through. Because he understands he is able to save his train and, if may be, to save people's lives. That is worth doing. It is worth while to understand.

This book teaches every boy something ahout the locomotive. If he understands what is taught here he can easily go on and learn more. It teaches him about electricity, too, so that he will know how the telephone carries the voice from place to place; why it is possible to tolegraph from New York to San Francisco, or under the octan to London; how it is that electric cars are made to go; and a hundred other things of the same sort.

In a small book like this it is not possible to speak of everything; but the most important machines and inventions are explained. By pay ing attention you can understand these, and if 6 thoroughly understand oue mathine jou cmis learn about others. While you are learning you are fitting yourself to be a more useful citizen. The man that understands is the man that every one trusts. He has the work he wants and itw paid for it. He likes his work. It is a pleasur. for him to do it. Many of the chapters in thi book speak about just such practical things as the locomotive, the telegraph, etc.

Somerof them speak about matters that do not seem to be practical at all, about things that are not immediately useful-about the motions of the Sun, Moon and Stars, for instance. You may say, what earthly good can it be to me to know that the Stars rise and set, as the Sun does; or to know what makes the colors of the mainbow; or to study about the chemistry of sulphur and carbon and nitre?

Here is an answer to one of these questions; and all of them have answers of the same sort. It is extremely " practical" for ship captains to be able to navigate their vessels safely and quickly from port to port: The navigating of vessels is done by the stars. The first thing for a captain to know is that all the stars rise and set. He has, to begin with that. Afterwards he finds out the latitude and the longitude of his ship by measuring the height of the sun and stars above his horizon at certain times every day. If he knows his latitude and longitude he knows where his ship is
the tracklesfocean. That is "practical." It
pa be verg practical for a ship captain to arrive at Brod. "筑保 he meant to go to England.
 unless hetregan by learning what is taught in this ok abouthe stars.
\% ${ }^{*}$ Gunpowder is made by mixing charcoal and sulphur and nitre; and it is made according to the rules of chemistry. It is practical and useful to be able to make good gunpowder, so that rocks can
be quarried eảsily; tunnels hollowed out, caunons fired, and so forth.

Moreover, it is interesting to know such things. Here you are living in a world full of interesting things-sunsets, rainbows, machinery, and so forth. Why not learn about them?

Suppose some one working in a factory saw a steam engine driving the machinery every day and all day, and never took the trouble to ask how it was that a little coal put in a boiler downstairs made a wheel turn round in the fourth story. It would show, in the first place, that he was not very much interested in his work, and in the second place that he was rather stupid not to find unt how a coal fire could be used to heat watcr to make steam; and how steam conid he made th lurn a wheel on the engine; and finally how belts on this wheel could be made to turn all the wheels in a whole building. Suppose a loy never tried to find out what made the hands of his watch turn rond so as to tell the time. It would begstupid fon him

Now the whole world can be ef trined. It is not magic. There is a good reastow werthing. Some of the reawons are not easy to fand out but many of them are. This book explains some of the simplest and most interesting and important things. When you have thoroughly understood these you can understand others either by looking about you and thinking for yourself; or by asking questions
of older people; or by looking in encyclopædias ind other books of the sort. When you understand, you can be useful; and when you are useful yory will be happy. The business of grown-up men and women is to do useful things; the business of children is to learn how io do them.

This book is written, then, to help you to understand the world you live in ; to put you in the way of being a uscful citizen; to help you to be happy. Every intelligent American child, boy or girl, ought to know all that is in this hook (and a great deal more). Things that are explained here will help you, every day, to understand the world you live in. It is your world (whose else is it?). Why shouldn't you take the pains to understand it? The difference between men and animals is just that men are interested and do understand while animals take everything for granted and do not even try to understand what they see.

The boy that tries to understand turns out to be the most intelligent man; the mostt intelligent man can be the most useful and the happiest; the nation that has the mopt intelligent citizens is the most useful nation in werld. You have a share in this work andthis book is written to help you to do your pank

CONTENTS.

BOOK I. - Astronomy.
TACR
Astronomy: 1
What the Different Sciences Teach I
The Earth 2
The Axis of the Earth 3
The Earth's Equator. 3
Day and Night 3
Sunrise and Sunset 4
The Stars Rise and Set 5
The North Star 5
The Great Dipper 6
The Stars of the Northern Sky 6
The Northern Stars Appear to Circle Round the Pole 6
The Southern Stars Appear to Rise in the East and to Set in the West like the Sun 9
The Apparent Motion of the Stars from Kising to Set- ting is Caused by the Rotation of the Earth on lts Axis 10
The Celestial Spheré: II
Astronomical Instruments. 11
Telescopes
Clocks and Chronometers
A Home-made Pendulum13
Circles 13
The Earth and Planets nove Round the Sun 13
The Sun and All the Stars Shine by their own Light 4
page.
The Moon and Planets Shine by Light Refirited from the
Sun 14
The Orbits (Paths) of the Planets 15
Whe Diw? 1%
The Mru,r Planeta ! Asteroids) 17
The Distance of the L,arth from the Sun 17
The Sizes of the Ilamets 18,20
3ystipe of the Sua 20
andrtuat Merrury 20
mineplaret Venus 20)
The flitet Mars 20
The l'mas lupites 11
The Ilanet batarn 21
The Planet Tranum 21
The Planet Neptune $2:$
Coukd Aton live on doy of the Planets? 22
The Monr. 25
The" Phases of tho Nom 26
The Itasoc, of the Plants Veans and Mercury. 28
The Muntait: of the Moon 28
 4
The Ikerolution et lu, Fiath :otnd the hat 30
The Seasons 3)
Eclipses of the Sun 33
Edipseagof the Moon. 34
The Sin 3.
The Sun is a Star 35
The Spots on the Sur 37
The Sun's C"orona 35
Meteor-Swarms 36
Cozyets 37
\& oting-stars (Meteors) 39
T. 解nivertec of Stars 40
Contatilations 41
Cypster, 41
The Nebulxe 41
The Distances of the Stars 42
BOOK II. - Physics.
Physics :. 44
Solids, Liquids and Gases 44
Air 45
Ice 4.5
Steam 45
Force of Gravity 46
Fall of Heavy Bodies 47
Attraction of the Farth 47
How Fast do Things Fall? 48
Wetight 49
The Vertical Line (Up and Nown) 5
The Penclulum 52
The Level 52
Measures of Length 53
The Metric Syntem 53
Tools to Measure Lengths 54
Time (Day, Week, Month, Year, Century) 55
Heat: 56
Them nometers 56
Meiting Point
57
Boiling Points
; 8
Hot Bodies unually Expand
59
Conduction of Heat
59
Wrik can be Turned into Heat
60
Steam
6π
The Locomotive62
Lngut: 63
The Sun and Stars Shine by Light of their Own 63
Phases of the Moon 64
Self-luminous Bodies 16
All Light-rays Travel in Straight Linen 66
Rays of Light go in all Directions 67
Shadows 67
Eclipses 69
Shadows of an Obelisk 70
The Sun Dial 71
PaOz
Reflection of Light by a Mirror. 72
Refiecting Telescopes 72
A Home-made Kaleidoscope 73
Refraction of Light 74
Refraction of Light by a Prism. 74
Refraction of Light by a Lens 75
Microscope 75
Burning Glass 76
Spectacles 76
The Telescope 77
The Solar Spectrum 77
Velocity of Light 78
Sound : 78
Sound Waves 78
Waves of Water. 79
Sound is Caused by a Vibration 79
Mutical Instruments. 80
Singing 81
Sound Travels Through the Air 81
Velocity of Sound 82
ectricity: 83
每riction 83
Experiments 83
Benjamin Franklin's Experiment (1752) 87
Electricity from Batteries 88
The Electric Battery 88
4ome-Made Battery 89
Currents and Circuits 89
. 4 Htic Bells 90
The Electric Telegraph 91
he Telegraph Alphabet 92
Whe Telephone 97
The Dyinatiot 93
The Eiturt Railway 94
Electric Highting 94
AgNE 95
Nume Magnets 95
Experments 96
Magnetism 96

BOOK IV.- Cuemistry.
PAGF.
Chemistry : 123
Thinge Needed for Experiments 123
Physical Changes 124
Solutions 124
Mixtures 124
Chemical Combination 124
Making'Sulphate of Iron 124
Making Sulphate of Copper 125
Maki: x Sulphate of Zinc 125
Making Carbonate of I ime 125
Chemical Affinity 126
Chemical Manufactures 126
Guapowder 126
Composition of Air 123
Composition of Water 127
Oxygen Gas 127
Nitrogen Gas 127
Hydrogen Gas 129
Combustion (Burning) 130
Carbonic Acid Gas 130
Iron-Rust 135
Temperature of the II uman Body 130
Combustion in Oxyger $13{ }^{1}$
Composition of Water 131
Balloons r3i
Chemical Elements 132
Netals 133
Non-Mctals 133
Chemiral Compounds I33
Chemical Syinbols 135
BOOK V.-Grology.
Gzologr: 136
The Earth's Crust 136
Running Water Models the Shape of the Hills. 137
Ocean Waves Wear away Sea-clitfs 13^{8}
Rivers cut Gorges 139
PACR
Gorge of Niagara River 139
The Cation of the Colorado River 140
Rivers carry Soil to the Sea 141
Stones are Carried by Streams. $14{ }^{2}$
Streams Sort out Stones in Sizes 142
Fiood Plains 143
Deltas 14.3
Sediments are Deporited in Layers (Strata) 14.3
All Sedimentary Rocks are Stratified 144
Glaciers 145
Bowlders 145
Glacier-scratrhes on Rocks 46
The Glacial Period in the United States 147
Icebergs 149
Pack-Ice 149
Soni in Rock that has been Rroken up 15°
Difterent Kinds of Rocks 151
Granite 151
Limestone 151
Sandstone 151
Lava. 151
Slate 153
Clay 153
Crystalline Rocks 153
Crystals 153
Precious Stones. 153
Snowflakes are Crystals 155 :
Elevation and Depression of the Land 155
Sea Shells on the Tops of Mountains 156
Seals in Lake Baikal. 156
The Temple of Jupiter Serapis 156
The Stratified Rocks 158
Criumpling of the Earth's Crust 15
Mountains. 159
The Pressure of the Rocks Within the Earth 159
Fauna and Flora of a Region 160
Fossils 16y
The Unstratified Rocks 161.
Volcanoes 161
Vesuvius 162
Pompeii 163
Earthquakes 164
The Age of the Earth 164
Geological Ages 165
Age of Invertebrates 168
Age of Reptiles. 169
Age of Mammals 159
Life in the Age of Invertebrates 169
The Coal-period. 169
at-bogs 169
$f e$ in the Age of Repliles 171
Flora and Fauna of the Jurassic Period 172
Life since the Age of Coal 172
Ancestors of the Horse 174
Natural Selection 175
The Struggle for Lixistence 175
Heredity : Adaptation 3\%
Recent Geological Periods 177
The Glacial Period 178
Botanical Regions 179
Prehistoric Man 181
The Pyramids of Egypt 181

* BOOK VI.-Zonlogy.
iLogytane. 183
 183
Ditixine 184
Tossk 185
Fauntw 185
The Eight Branches of the Animal Kingdom 286
Cells 187
Protoplate 187
One-cellad Animals - the Anceba 187
The Oosmbre Mud at the Bottom of the Ocean 189
Many-celled Animals - Sponges 190
Jelly-fish 191
Corals 192
Coral Islands 192
PAGEA.
Mydra 193
Worme 194
Star-fish (Radiates) $\$ 95$
Oysters 196
Clams 197
Pearls 197
Mother-of-Pearl 197
The Lobster 197
Crabs 199
Insects 199
ButterfliesIntelligence of Insects - AntsBees,
Spiders 205
Vertebrates 206
The Codfish 210
Electric Fishes 210
Sticklebacks 211
Frogs and Toads $2 \times I$
Tadpoles 211
Reptiles 213
Turtles 213
Rattlesnakes 213
Alligator 213
Birds' Bills 214
Birds' Feet
Birds
The Sparrow
The Blue Jay 217
Nests 218
Migration of Birds 219
Intelligence of Birds 219
Mammals 220
Horns 220
Hibernation (Winter Sleep) of Animals 220
Intelligence of Animals 223
Social Life of Animals 2 3
Monkeys 232
Man 232
BOOK VII. - Botany.
Botany : 235PAG思
What is a Plant? 23.5
Cells 2.35
Vegetable Protoplasm 235
Experiment 236
Growing-points. 23^{6}
Cells Contain Living Protoplamm 236
Division of the Cell 237
Nuclei 238
Mother cells; Daughter-cells 235
Size of the Cells. 238
A Plant 238
Growth
Growth 23^{8}
Color of Plants - Chlorophyll 2.38
Sunlight does the Work 238
Herbs 239.
Shruls 239
T
T
Tre"s 239
Amunal; 239
Bionniats 234
Perennials 2.39
P- Khoots of Plants 2.40
Reotts of Trees 2.40
Root:Hairs 241
Work of Roots 241
Circulation of the Sap 241
Roots Grow Downward 241
Experiments 242
Water Rises in the Roots 242
Roct-pressure 242
Plant-Food from the Soil
243
243
Length of Roots 243
Aërial Roots
243
243
The Stemúd Plants 245
Fleshy Stem's 345
Woody Stems 245
The Plan of a Plant-Maize 246PACW,
Endogens (Maize, Palm) 246
Fxogens (Oaks, Elms) 246
A Tree is like a Colony of Corals 246
Underground Stems 2.47
Branches 249
Strugyle for Existence 24^{8}
Winter Buds 249
Fill of the Leaf. 24)
Evergeans. 250
Leaf-wors 250
lums -50
Fxperiment 250
Leaves 251
Rihs - Mid-rib 251
Veins- Vemicts 25
The Shapes of Y.eaves 252
Latas Low the Sunlight. $\therefore 5$
Arrangement of the Leaves on the Shont 254
Hhatling lores (Holes) in Ieaves 245:
I aves Breathe in Carbolic Acid (ias (chieflyt.
Leaver Breathe out Oxygen (chiety) 屚
Porcs in the IIman Body $2{ }^{2} 5$
Leaves Breathe in the Vapor of Water 2.57
Why the Shade of a Tree in Cool
How Plants get their Food 158
Plants Contain much Corbon 25 S
A Green Plant gets its Carbon from the Air 25^{8}
The Plant makes Stareh for its Food 259
The Plant turns Starch into Sugar 259
The Sup 260
The Life of a Plant
Plants that Catch Flies for Food 260
20.6
Flowers - Branches 16Solitary Flowers
What klowers are for. 3 CiI
Calyx 263
Whorl 263
Corolla 263
PaC荡
Sepal． 264
Petal 264
Torns． 264
Stamen 264
Pistil． 26_{4}
Anther 265
Pollen is Borne by the Stamens 26_{5}
Ovary 265
Style 265
Stigma 265
The Seeds are Borne by the Pistils 265
Fcrtilization of Flowers 265
Cross Fertilization 266
Pollen is Carlied by the Winds 266
Pollen in Carried by Insects 267
Fruits 267
Berries 267
Stone－Fruits 267
Nuts 267
Grains 267
Pods 267
Life in Sueds 267
Mummy－Wheat 268
How Seeds Ars Scattered 268
 269
 369
Plants Sonctimes Grow from Buds 270
Fruit＇Trees Grow from Grafts on the Stems of Other Trecs 271
＂蝶解 Form of Plants $2: 2$
 273
Trees（and Flowers）Suggest Certain Feelinge 273
What Makes \＆Landscape Beautiful ？ 274
Gge of Trees 275
The Struggle for Existence 275
Colors and Odors of Flowers 276
The Gardener helps Nature to form Varieties of Plants 277
PAGR
Some of the Uses of Plants 278
I. To Purify the Air for Animals 278
II. To Make Food for Animals 278
III. To Fuithish Clothing for Men 278
IV. To Supply Fizel. 279
V. To Supply Light 279
VI. To Give Heam-cngines their Power 279
All the Life for the World Depends on Plants and upon the Sun 279
Arbor Day. 279
Number of Phanis 280
Species 280
Nanes of Splcies 280
Oak Trees. 280
Acorns 281
Pine Trees 282
Pine Copes 282
Ferns 283
How to Male: a Collection of Dried Plants 283BOOk VIIf. - Tife Iuman Body.
The Human Buyy 285
Physiology 285
Anatomy 285
Hyglene 285
Man is a Virtebrate Animal 286
Man is a Mimmal 236The Plan of the Human Body
The Chest (Thorax) and Ribs
The Abdetonen
Organs of the IIuman Body
What the Body is made of.
Chemistry of the Body
The Human Skeleton-Bones
CartilageTisspeThe Backipone297
PASik.
The Skull 298
The Soft Bones of Children 299
Bone, of the Hips 300
Bone, of the Legs 301
Bones of the Arms 301
The Structure of Bones 302
The Breep; Muscle 303
The Elboe Joint 303
It is Worth Whate to Keep Our Bodies H althy 303
What to do 303
Why for do it 304
Tight Shoes $30 /$
The Tecth 3.6
Muscles jos
Voluntary Muscles 309
Involuntary Muscles 309
Teadons 310
Muscles can be Educated 310
Contraction of Muscles 310
The Skin 3 it
The Dermis and Epidermin. 311
The Veins and Nervec of the Skin 312
The Organs of Touch 313
Some Parts of the Body are more Sir-itive than Others. 313
Sweat-glands 314
Use of the Sweat-glands 314
The Complexion 315
Blushing $3^{\prime \prime}$
Finger-nails - 5
Hairs 316
Oil-glands 6
Food: how it is Used in the Body 316
Food and Work 3 37
Gastric Juice 3×8
chype 319
319
Difestion in the Mouth 320
CONTETTS.xxxini
PAgE.
Saliva 330
Mucous Membrane 330
Gullet 320
Food Passes Down the Gullet Slowly 320
Gastric Juice 320
Digestion in the Stomach. 321
Digestion in the Small Intestine 321
Digestion 322
Absorption. 322
Lymph Vessels in 322
The Circulation of the Blood 322
Arteries 322
Veins. 323
Capillaries. 323
Oxygenation of the Blood. 324
The lluman Heart 324
The C cuarse of the Fluw of Blood 324
Systenge Circulation. 34
rumonary Circulation 324
The Cavities of the Heart (Auricles and Ventuselen) 3
Experiment s^{25}
Beating of the Heart - the Pulse 325
Experiment 326
The Blood. 327
Blood Corpuscles 327
Without Blood we Cannot Lire 328
Transfusion of Blood 328
We Speak by Air Forced Through the Glottis 328
The Air-passages 329.The WindpipePharynx\%
Larynx 29
Glottis 330
Experiment 330
Breathing (Respiration) 330
ExperimentMovements of the Chest in BreathingPlenty of Fresh Air is Necessary31
paga.
Good Ventilation 332
Sneezing and Coughing 333
Breathe Through Your Nose 333
The Brain 333
The Cerebrum 333
The Cerebellum 333
The Medulla 334
The Spinal Cord 336
The Nerves 33^{6}
The Nerves Carry Mesmages to and fion the Brain 33^{6}
Paralysis 337
Refley-Action 339
Nerve-cienters 3.59
Sleep 3.39
Death 340
The Elements of the Body Return to the Soil 34°
The benses 340
We Know the Outside World Through Our Senses 34
Personality 345
Stimulus and Reaction 342
Cells 343
Each Cell is Alive 343
Your Body is a Colony of Cell. 343
The Iluman Will Governs the Body 344
Seeing-the Eye 345
Experiments 345
Hearing-the Ear 347
Smelling-the Nose 34^{8}
Tasting-the Tongue 34^{8}
* BOOK IX.-Thr Early History of Mankind.
Ethiology: 350
Savages 352
Barbarians. 35^{2}
Civilized Peoples 3.53
The , sindne Age 353
 353
- Whe Iron Age 354
PAGE.
Progress of Mankind. 356
Origin of Mankind 35^{8}
So Frar as we Know every Tribe in the World was once Savage 359
Camiluals 360
How we can Tell the Previous Condition of a People, 360
Excavations 363
Pompeti 163,364
Archeoleagy 364
Pre-Historic Men 364
Ilow to Measure Time in the Anciont Mistory of Man- hind 364
Wild Beast that oncereived in Europe 365
 365
 307
 367
Kindans of Ancten: Peoples 367
Antient Eigypt: 367 :
Fin: ly History of the Egyptians 368
The Pymmids 368
The Sphinx $3^{6.8}$
The Great Wall of China 372
Life of the Egyptians 370
Egyptian Painting 371
Egyptian Writitug 35
Hieroglyphics 372
The King (Pharaoh). 37.2
The Plicutin 372
The Seribes 372
The Army 373
The People 373
Egyptian Commerce 373
Religion of the Egyptians 373
Sacred Animals. 371
Munnmion 374
How we have been Taught by Anclent Nationse 375
How to Study the History of Mankind 376
Irictures that Shay How each Nation Lives 377
Pacs.
Races of Mankind: 378
Marks of Race 379
The Color of the Skin 379
The Color of the Eyes 379
The Shape of the Skull 380
The Shape of the Nobe, Eyes, Lips 381
The Hair 381
Climate $3^{8} 3$
Language: 3^{36}
The Aryan Peopie and Lapgoage 38
Caste $39^{\prime \prime}$
The Semitic Language: 392
Other Groups of Languages 392
Sign-Ianguage. 393
The Language of Animals 395
Writinc: 396
Writing of the North American Indians 396
Writing of the Chinese 396
Writing of the Egyptians (hieroglyphics) 397
The Alphabet 397
Printing 398
Raper 392
Counting (Arithmetic) 398
Meastring (Mathematics). 349
Music 399
Beginnings of the Sciences 400
Food: 401
Flocks and Herd, 401
Government and Laws 402
Faxdy 402
Flint and Steel 402
The Fire-Drill 402
Matches (invented in 1840) 403
Light 403
Metal-Working 403
Pottery 403
Bricks 403
The First Books 403
Money 403

CONTENTS.

xxxvii
racz6
Wrapons: 405, 406
Clubs 406
Bowa and Arrows 406
Stofle-Axes 407
Swords, Battle-Axes and Guns. 407
Kuives and Swoids 407
Blow-Guns 408
Poivened Arrows 408
The Wuaket 409
Wer undex 409
, Treef, wellings 499
Into - Villages. 410
Laho--Dwellings. 410, 414
Cottages 4*1
llobint 413
('lit-1) mellings 415
Perepolis (destroyed B. C. 330) 416
The Colosseum of Rome (built A. D. 72) 416
The Ioge', Palace at Venice (XIV. Century) 417
$\$$ Cantles in the Midale Ages (before XV. Century) 418
BOATS: 417
Canmer 419
Oars and Sails-Rudder 420
The Pharnitims 420
Kayak 420
Chinese Junks 421
Modern Sailing Vessels 421
Ships of Columbus (A. D. ri92) 422
Modern Steam Ships 422
Society: 422
Laws 402, 423
The Family
425
425
The Clan
The Clan
Totems , ${ }^{4}$Marriage
427
Slaves 425
Religious Ideas: 428
The World of Ghosts 428
Fetishes 428
pagr
Causes of Sickness 429
Sorcerers 429
Magic 429
The Geds of the Grecks 429
The Gods of the Hindus 43°
The Gods of tice Arvans 430
The Sky, the Sus, the Moon were once worshipped Gods 43°
Names of the Days of the Werk $43{ }^{I}$
The Gods of the Japanese $4.3{ }^{2}$
The Planets 4.3:
Buddha and Buddhism 143
Christian Churches 95
Mohammed and Mohamnedanism 4
Chinese Tem, hen 44°
Worship of Ancesters 44°
Property: $4{ }^{1}$
Taxes 44^{2}
4.4
4

The air and the coal-gas that is burned to give light in street-lamps are gases. Gases are usually invisible. You cannot see the coal-gas, but you can hear it rushing out of the opened burner, and when you touch it with a lighted match it burns. You canngt see the air you are breathing but it is there, just the, same. The wind is nothing but moving air; and you can feel the wind. Clouds float in the air just aftcorks float in water. A halloon floats in the visible air.

Ice is a solid; melt it, and it becomes a liquid;

- Fig. 39. A ball floats in the air somew as a cork floats in water. the water is just the same thing as the ice-the same thing in a different form. You can frowe the water again, if you like, and have ice, once more. Or you can take the liquid water, heat it in a tea-kettle and boil it all away into steam. Solid ice, liquid water, gascous steam, are three different forms of the same thing.

Real steam is invisible, as you could tell if you boiled water in a glass tea-kettle, You would see the water and nothing else though the steam would be there, filling the kettle above the water. The little clouds of vapor at the spout of a tea-kettle are not clouds of gaseous steam, but extremely small drops of liquid water. They look white just as the little drops of spray from a
fountain look white. Both the fine spray of the fountain and the fine bubbles that make the clouds at the spout of a teakettle are water and only water. By pressing and freezing air it can be made liquid and even solid.

Force of Gravity.-If you drop a stone from your hand it falls to the ground. Anything--lead, iron, stone, wood

Fig. 40. The leaning tower of Pisa. Thin tower was built about A. D. 1200, and is still to be seen, as in the picture.
-falls when you let it go, and it keeps on falling till it reaches the ground, or until it is stopped by something - by a table, or something of the sort. Every heavy thing falls as far as it can. And everything that you know of is heavy. Paper is heavy ; it has weight. (The Latin word for weight is gravitas=heaviness.) A newspaper crumpled up into a ball has the same weight as the same newspaper loose in sheets. If you let the loose newspaper fall
from a second-story window it will flutter about and take a long while in falling ; but if you crumple it up tight it will fall to the ground in just the same time as a stone dropped at the same moment. (Try it.)

Fallof Heazy Bodics.- Drop a hearystone and a lighter one from the second story window at the same time and you will see that both of them reach the ground at the same instant. (Try it.) For thousands of years men thonght that a heavy stone would fall quicker than a light one, but Gahleo tried this eaperiment from the leaning tower of Pisa ${ }^{2}$ andproved that all things, heavy or light, fall with thename quickness.

Ten pounds of loose feathers tloat about in the air for a long time. The air blows them about. But if you put them in a tight bag they fal\} just as tast as ten pound of ice. or water, or lead; just as fast, and no faster, than one pound of leat, or ice, or water.

Attracition of ine Earth. -Why do these things fall down? Why

Frrs. 41, Amagnet attractes bits of irom near it. (The esperiment should pertried.) Thue is 4ntw:hmer abogt the inncice thyidutity th iron; tur ${ }^{2}$, ak (i) thing abourens Fialh that makes things fall. There is a force in the magnet, and a force. in the Earth. do they not rise up? The answer is: They fall

[^0]2 Pronounced pé'zä. A city of ltaly.

PHYSICS.

because the Earth attracts them-somewhat as a magnet attracts a piece of iron. (Try it.)

The weight of a horse walking presses on the ground and makes deep footprints. The heavier the horse the deeper the footprints. If you hold a stone by a string as in the picture of the pendulum (Fig. 13) the weight of the stone pulls on the atring. The heavier the stone the more it pulls. A large stone pulls twice as much as one half ats large. If you fasten the stone to spring-balance, you can measure how heavy it is-one pound, two pounds and so forth. What you are measuring is . how much the Earth is pulling the stone downwards.

If you throw the stone in the air it goes a ceitain distance upwards but it always falls. The Earth is always attracting the atone; it is always attracting apples downwards from the trees when they are ripe the stems are weaker and the apples fall): h is always pulling down the m,sutains by attracting the rocks and making them fall; always, day and night, making the rivers flow down hill. After a stone has tallen as far as $i 1$ can g or and is lying flat on the ground, the Earth still attracts it. Tr! to pick it up and you will see that the stone still has weight-that the Earth keeps on attracting it, somewhat as a magnet holds fast to the bits of iron it is attracting.
度定 Fast do Things Fal, ?-All heavy things fall at the same rate; one falls just as fast as another. By dropping things from high towers and timing their fall by a watch, it has been found that All heavy things fali 16 feet in the first second,

nd so on.

You can prove a part of what has just been said if you can find two windows one 16 and the other 64 feet from the ground. A stone dropped 16 feet takes one second (by a watch) to reach the ground. A stone dropped 64 feet takes two seconds. If you have no watch you can make a pendulurn that swings in just one
second by taking a string 391^{10} inches long and tying one end to a nail and the other to a weight（a key will do）：

One swing of the pendulum of Fig．13，frum any point back to the same place again takes two seconds．One boy can drop the btones ind another can count the swings－the seconds．（Tryit．）

Weight．－The government keeps a piece of metal in Washington which is called a pound weight；and there is a law that all the pound weights in the whole country from Maine to Cali－ fornia shall be alike．

Fig．f2．A balance．If you put twoweights that are alike in the two pans，the arm（ $A B$ ）will be level．If one weight weighty more than the other its pan will go down．You can make weight like another weight，then，by filing it down till the tu⿱⿻丅⿵冂⿰⿱丶丶⿱丶丶⿱一⿱㇒⿵冂⿰丨丨一心 just balance．

One－sixteenth of a pound is called an ounce．All the ounce weights of all the druggists in the whole \cdot
country are alike. If you have a balance, and the weights that go with it, you can weigh anything you choose. A pound of anything must just balance the pound weight.

Notice that a pound of lead is smaller in size than a pound of iron; lead is hetrier than iron we say--and we mean that a cubic inch of lead weighs: more than a cubic inch of iron. Notice that a pound of soap is bigger than a pound of iron; soap is lighter than iron,

Fig. 43. Photograph of a piece of hoating ice. The level of the water is along the line A \qquad A. 4 we say--and we mean that a cubic inch of soap weirhs less than a cubic inch of iron. Your body is alittle lighterthan water; and the proof is that if there were a hollow ryass statue exactly of vom slape and size, filled with water, the water in it would weigh more than you do. Another proof is that you can float in water. Your body is lighter than lead; and the proof is that if there were a lead statue exactly of your shape and size it would weigh much more than you do.

Ice is lighter than water; it floats.

Gold is 19 times heavier than water;
Quicksilver is $33 / 3$ times heavier than water;
Lead is II times heavier than water;
Cotper is 9 times heavier than water;
Iron, Tin, Zinc are 7 times heavier than water;
Common stone is $21 / 2$ times heavier than water;
Ice is $\frac{4}{10}$ an heavy as water;

- Oak wood is ${ }^{7}$? as heavy as water;

Keresene oil in ${ }^{7} \mathrm{y}$ as heavy as water;
Cork is x^{2} as heavy as water.
Noticestukt things that are heavier than water sink when they are put into it; and that all things that are lighter than water (ice, wood, cork, etc.) thoat. Iron will float on Quicksilver. (Try it.) The air is much lighter than water (and so all ar-bubles rise in a tumbler of water). The air in any box weighs only one one thousandth as much as the water that wonld till it.

The Tertical Linc; L'p and Dozen.-The Earth attracts all heary bodies somewhat as a magnet attracts every piece of irou. All heavy bodies fall down as low as they can. Faston a string to a nail and a weight to the other end of the string. The string points "p and down, we say. It is a vertical line. Uh is towards the nail; down is towards the Earth. Wherever you may be a pendulum at rest is vertical-is up and down.

Now the Earth is round, and as you travel round the Earth you will have a vertical line at each city, but a different vertical line at different cities.

Up then really means away from the center of the Earth; down really means towards the Earth's center. A vertical line is really the line of that diameter of the Earth which passes through your
feet. The point in the sky, among the stars, ovet your head is called your Zenith-point. The four boys in the picture have four different zenith-points.

Fig. 44. A pendulum at rest anywhere on the surface of the Earth points to the center of the Earth.

The Sun attracts the Earth and all the planets just as the Earth attracts everything in its neighborhood. Evelything on the Earth is held near it by its attraction, just as all the planets are held near the Sun by its attraction.

Fig. 45. A level somewhat like the levels used by carpenters. When the little air-bubble is in the middle of its tube, the straightedged board is level-is horizontal.

The vertical line is perpendicular to the level surface of the ocean, or to the level surface of still water
anywhere (hold a pendulum over a basin of water and see for yourself). Masons use a pendulum swung in a board to get their brick walls vertical, and carpenters and surveyors use levels-which are glass tubes almost filled with alcohol--to get their lines horizontal, or level.

Mcasures of Length-a foot, a yard, a mile.-The government keeps a bar of metal in Washington and the distance between two particular lines on that bar is called a foot. Three feet make a yardt; 5,28o feet make a milc. Twelve inclies make one foot. There is a law that every foot-rule in the whole country, from Maine to California, shall be of one and the same length. Every carpenter's foot-rule is just the length of the foot-rule of every other carpenter.

Carpenters measure by feet and inches; machinists file iron by fractions of an inch-as r_{2}^{1} inch, ${ }_{6}^{1}{ }^{1}$ inch; shopkeepers sell cloth and ribbons by the yard; surveyors measure roads by the mile.

The Metric System.-In France there is a metal har kept by the government as

Fig. 46. American inches compared with Freuch centineters.
a standard. The dictance between two particular lines on it is called a metre (or meter) A meter $=399^{3} 0_{0}$ mohes it in about

Fis 47. A carpenter's twrefoot rule. It is usually made so as tw be onls vix wethe lones when folded up. there inches longet that a serd

A hiomefrer is 1.0×8 meters atomat is ot a matr.

A derimeter is, 's at a watta - almat tome ixくhu:-.

A litere is the frem. hmeamure tor liuman, efe, and it is abont equal to our qual.

Fig. 48. A tape-measure. Short tapes a yard (3 teet; 36 inches) long are used by snlesmen to measure cloth or ribbons. Longer tapes (50 or 100 feet long) are used by carpenters and masons. Tapes made of flexible steel are used by surveyots to measure land, lay out streets and so forth.

Fig qu. Compancmat or dividers. These are usid by mean wo draw phans, by carpenter-and machuniots, tocarry a measure made in one place ove to another place; or the to find out how maxy inches long s piece of wood or iron must be to be of just the same length as a plan of it drawn in an office beforehand.

States allow our merchants to use them also; and that is the rea. son they are mentioned here.

Time.--The instant when the sun is highest in the shy-half way between sun-rise and sun-setwe call noon. Our watches are set so as to mark I $2^{\prime \prime} \sigma^{\prime \prime} \circlearrowleft^{n}$ at the instant of mon, and regulated se as th, mark $12^{h} 0^{n} 0^{n}$ again at the next noon. From N onday noon to Tuesday noon is a day $=24$ hours. Onc hour $=00$ minutes; and the minutes are marked on all watch-dials. One minute $=60$ seeconds: and the seconds are marked on most watch-wlials.

Tohbep account of the days we give them names (Monday, Tuesday, and so forth) because we find it convenient, just as it is come nient to name children (Tom, Agnes, Mary, Jack, and su forth). Monday begrus at midnight of sunday; Tuesday begins at midnuhnof Monday, and so on. Seven days make a wrek the bint diny of the week is Sunday, the moond Monday, and so on). The werhs have be names. It has not been found convenient to mame werks as days are named. But months are named for convenience (January, February, and s. forth). Some months have 30 days, some $3 I$ and one has 28. (Name them.)

A year has 12 months and common vears are 365 days long. $305 \frac{1 / 4}{6}$ days is the time regured for the Eath to gro once round the Sun. It is the period from one midsummer to the next one, from one Christmas to the next one. Every fonth year we.
call a leap year and it has 366 days (February has 29 days in a leap year). The number of days in four years is, then, $365+365+365+366=1461$. One fourth of 1461 is $365 \frac{1}{4}$. The years are numbered. The first year of the twentieth century began January i, 1goi. The next year was y 902 and so on. The count began with the year in which Christ was born (about 1900 years ago). Ile was born within the first century and the centuries are numbered. It is combenient to say that England was conquered by the Normans int the XI. century; that America was discovered by columbus in the XV. century; that the Pilgrims came to America in the XVII. centur! : that our Revolutionary War was fought in the XVill. (entury; and so on.

HEDT

Thermomelers.--A thermometer is made of a glass tube partly filled with quicksilver, but with no air. in the tube. A scale of degrees is engraved alongside the tube. If you put the thermometer into melting ice (or freczing water) the quicksilver stands at $3^{\circ}{ }^{\circ}$ of the scale; "Freczing Point." If you put the bulb of the thermometer into your mouth the mercury will stand at about 98°. That is the temperature of your body. If you stand the thermometer in a kettle of boiling water ${ }^{1}$ the mercury will rise to 212°.

[^1]

Astat Varm. [保, ;
A i i, n_{1}.
 **ith fly quirksitper standing at 30°.

Centigrade 7hermometer. - The French and most other naticns, ust a different scale for their thermonneter from that used by the Amerienns and English. Our cale is called Fahrenheit's scale ' frem the German sceentific man who invented it alumat $\times 7+$. Theirs is alled Centigrade, beranse ther, are wo dicgrece between the mithe foint of ice (0°) and the bolmo print of water (rof"). It in s.acd cuerme.ts by ciciutigh, ment and 11 most countris ot Europ and houth Atreitio in omanera.

The "low at" "f boting water fo the heat that it has got from the ine. its "temperture" is 2120 . The "heat" of your boolv is the heat you have got from the food you linve eaten. The "temperdture" of your body is 98°.

Melting Points; Foiling Points.-Themeiting mint of ise is 32°, the boiling peint of ice (or water) is 212 . 'The melting point of dis: i, ing is the reading of the thermometer when that thing changes from a solid into a liquid; the boiling point is the reading of the themometer when that thing chat. \therefore trom a liquid into a gas.
${ }^{1}$ Pronounced fa'ren-hit.

Fig. 5 r. A Centigrade 7 hermometer. The scate is dividedinto one hun. dred de. Hees. Such thermone ters ole uned in Enc yopean and Souk. Arnerirancoun: tries.

The melting point of ice is 32°; it changes into liquid water.
The melting point of quicksilver is -38°; it changed from solid quicksilver into liquid at 3° below zero.

The melting point of solid sulphur is 240°; it becomes liquid. The melting point of solid lead is 600°; it becomes liquid.
The melting point of solid irm is $2,200^{13}$; it becones liquid.
The boiling point of water is

Fig. 52. An iron ball that just fits a ring when it is cold will be too large to slip through it when the ball is red hot. This is a proof that iron expands when heated. The ring remains of its old size. The ball is larger when it is hot. (An apparatus like that in the picture can be made by any ingenious boy.) 212°; in changes into steam.

The boiling point of alcohol is $17_{2} 2^{\circ}$; it changes into gas.

Mot Bodics Usually Ex-pand.--The tire of a wagon wheel is larger when it is hot than when it is cold. The blacksmith tries a cold ture and finds that it is too small to fit the wheel. He heats the tire; it expands. He slips it over the wheel and lets it cool. It shrinks and fits tight. The quicksilver column in a thermometer becomes longer as the column gets hotter.

Nearly every solid thing is larger when hot than when cold. Very hot cannon balls are larger than the same balls when cold, as can be told by measuring them. Railway rails are longer when hot than when cold and you will notice that they are
laid down with a little free space at the end of each rail to allow for expansion. Melted lead takes up more space than cold lead. But there is one important exception to this general rule. Melted ice (water, that is) takes up less space than cold ice. Water gets larger when it freezes, not smaller. This is the reason why our water pipes so uften burst when the water freezes.. The pipes are full of water at first; when the water freezes it expands and the pipes break.

Conduction of Heat.-Heat is conducted through bodies somewhat as if it were water flowing through pipes. Some bodies (things) let the heat flow, fast. A silver spoon, for instance, dipped in boiling water will soon be hot all along its length. (Try it.) A piece of charcoal alongside of the silver will be very hot where it dips into the water, but will remain cool at its upper end. (Try it.)

Silver, iron, copper and other metals ate good condinctors of heat; charcoal, wood, wool, felt, fur, are poor conductors of heat. We make our.winter clothes out of wool and fur because they do not conduct the heat of our hodies away to the cold air. A jarket made of copper would heep the wind away thoroughly, but it would be a very poor garment for cold weather. (Why?).

Work can be Turned into Heat.-If you rub two sticks together both sticks get warmer. Savages light fires by turning a stick of hard wood rapially in a dent in a piece of soft wood. The hard wood is moved as if it were an auger, boring into the soft wood. By and by the soft wood begins to char and to burn. The movement that you give
the stick is turned into heat. If you bore a hole in hard wood with a gimlet both wood and gimlet become warm. If you rub your hands together in cold weather you can warm them. In all these cases work of some sort has been turned into heat. If you place a copper cent on an anvil and pound it with a heavy hammer the coin becomes

Fig. 53. Steam from heated water will drive out tightly fitting cork.
hot. (Try it.) The harder and faster you pound the hotter becomes the coin. A machine could be made to do the pounding so hard and so fast that the coin would become red hot. The work done by the hammer has somehow been taken up by the coin, and given out as heat.

Steam.-When water is boiled in a teakettle steam is formed and escapes through the spout and by lifting the lid. If the spout were securely stopped up and the lid soldered down the steam might burst the tea-kettle just as it sometimes bursts boilers. Steam can do work, then. In the steam engine it is made to do useful work.

THE STEAM ENGINE.

The Stam Engine.-The steam engine is a machine that turns heat (of the fire) back into work. The fire makes the wheels of the locomotive turn. You have often seen a locomotive. It is worth while to understand how it works.
A (Fig. 54) is the fire in the firc-bow; the heat goes through tubes in the bisit' (i^{\prime}) and turns the water round the tubes into steatn. The steam is led by a pipe into the stcam-cher $(/ /)$ and from there it goes through another mpe to the cylinder (B) just above the front wheels of the locomotive. (There is a separate picture of the cylinder at the top of page 61.) Inside of the cylinder a piston (h^{-}) fits

Fig. 55, Another picture of the cylinder of a steam engine. The steam rushes from the boiler into the zolve-chest and through the open way into the cylinder and pushes the piston to the right (in the picture). Then the steam is let into the erlinder by another way and pushes the piston to the left (in the picture). The pis-ton-rod keeps moving to and fro. It is fastened to the drivingwheele by a crank, and the wheels keep moving wound and round, and the focomotive keeps moving along, dragging the train after itself.
tightly and the piston-rod goes out of the cylinder and is fastened to the large driving abiofls at the rear end of the locomotive. The machinery is so arranged that the stean is first let into the front end of the cylinder (13) and drives the piston backward, then tha stermis letinto the rear and of the cylimer and drives the piston formate. 'The pistom ketps mosing to and fro, wad therefore the wherels keep turning round, and the locomotice keeps ervity.

LIGIIT.

The Sun and Stars Shine ty Light of Their Ou'n.- The Sun and all the stars give out light of thein own. The Moon hats no hight of its own but shines by affecting the Sun's light to us. Aitimes only part of the Moon's face is shmed on by the sun and only part of it, therewre, is seen by us. (See page 26 for an explandion of this.) A candle, an electric light, a fine-fly, a glowing coal, shines by its own light. It is seff-liminous. Phosphoms is self-luminous, as you can prose by going into a dark tloset and robbing the head of a match gently with your hand. (Try it.) The head of the match contimes a good deal of phosphorus,

Fig. 56. The Moon as it appears to us at difterent times of the month.

The upper pictures show the New Moon. The third picture shows the Moon half bright, and the others show how the Moon looks at other times. The Sun shines on half the Moon's-globe-the halt turned towards the Sun-and makes it bright. We took at the Moon and see half of its globe-the half turned tovards us. Sometimes the whole of the part turned towards us is ighted, as in the fifth picture. Usually less than this is bright.

Fig. 57. The Sun shining into a darkened room through a small hole in the wall. The rays of the Sun travel in straight lines. If there is dust or smoke in the room it in easier to trace the course of each ray. Burn a newspaper, then: Notice that the Sun makes a spot on the floor which is an image - a picture -of the Sun.

In the daytime all sorts of things shine--a whitewashed wall, the windows of a house, a piece of tin, a mirror, a diamond, and so forth. As soon as the Sun goes down they stop shining; They.
shone, then, by the sun's light. They were luminous (light-giving) but not self-luminous. Most things in the world are seen by the Sun's light which they reflect. The light comes to them from the distant Sun; they reflect it somewhat as a mirror reflects; and the reflected light enters your eye and you see them. 'When the Sun goes down you see them no more: unless, indeed, they are lighted by rays from a laup. Daylight is the Sun's lipht reflected from and scattered by dust in the atmosphere, from clouds, the ground, buildings, streets, and s forth.

All Lightirays Pratel in Straght Lines.- The Sun's rays travel in straight lincs. You can prove this by making some rom that tases the south very dark and by then letting in a ray of stinlight through a small hole.

Fig. 58. Rays of light from a candle go in all direction.

Rays of Light go in All Dircctions.-An electric street lamp, for instance, shines towards the north, east, west, south." lt slnines upwards and downwards. Its rays of light must, then, go in all directions. If you puta candle in a darkened room, the whole of the room is lighted-the ceiling, the walls, the floor. Wherever you place your eye some ray from the candle will enter it. Wherever you are yon can see the candle. This proves that the candle's rays go in all possible directions, up, down. sidewise. The Sun shines in every possible direction, too--towards the north, east, south, west.

 rectives only a sm.. . past of them.

Shadows.-When the Sun shines on any body (thing) it lights one half of it. The half turned towards the Sun is lighted. The half turned away from the Sun is not lighted. Beyond the body that is shined upon there is the shadow. The shadow of a thing is the space beyond it from which it keeps the light away. Your shadow, properly
speaking, is not the flat distorted picture on the ground, but all the space back of you, from which your body keeps the light away.

Fig. 6o. The Sun shines on a ball and lights one-half of it ; the other half is not lighted. All the spase back of the ball which is not lighted is its shadow, theugh we often rpeak of the dark oval, where the shados meets the table an "the shadow of the ball."

To the side of the Earth lighted by the Sun it is daytime: to the other side of the Earth, it is night ; beyond the Earth its shadow extends for thousands of miles. In the same way, the Sun lights one half of the Moon (the half turned towards the Sun); the other half of the Moon is dark; and beyond the Moon its shadow stretches out for thousands of miles.

Fig. 6: The Gunshining on the Earth (or the Moon) lights one-hall of at. Beyond is the unlighted shadow from which the Sun's rays are cut oft.

Phas a candle on a table in the middle of a dark room and hold a jeacil near the candle. Ilok a sheet of white paper a foot beyond the pencil and let the shadow of the pencil tall on the paper. Kerp the pencil in the same place and move the paper two fect away; then three feet; and so forth. Now move the pencil further away from the candle and try the sane experiments again. Put two candles close together and try the same experiments. Each time look for the ambra and tor the fonumbra of the shadow. The umbra is the darkest portion of any shadow; the frombra is the rest of the same shadow. With only one catidic make the shadow of a ball-of a book-of a card. Hold the card edgewise towards the light-flatwisc-iniclined. Cut a circle out of a card and try to make its shadow round - oval-a straight line. (See Figs. 29, 30.)

Shadow of an Obelisk. -When the Sun is high in the heavens the shadow of an obelisk on the

ground will
be short as
in Fir. 62. ${ }^{*}$
When the:
Sun is low-
er, the what-
ow on the
ground will
be lenger.
as in rig.
-3. The
haysht os the Sur in the heaverns caln le: calculatcdby cimply
 the leugth of the shadon on the ground-- by measuring K.M. The ancient astronomers of Egypt determined the Sun's height in this way. when the sim is not so high in the heavens.

The Sun-Dial.- The ancients used to measure the time of day by the movement of the shadow on a sun-dial.

Fig. 64. A Sun-dial. The line through the figure 12 in the picture lies exactly north and south, with :2 at its non thend. As the Sun moves the shadow moves. The pict wre wa tiken at four o'clock in the afternoan. How do you know it was not taken at four o'clock in the morning ?

Reflection of Light by a Mirror:

Fig. 65. A beam, or ray, of "light is reflected by a mirror, as you know very well; and as can be proyed by the experiment shown in the picture.

Let a ray of light into a darkened room through a very small hole and move a mirror till the ray strikes it. The ray will be reflected so that it strikes the ceiling. (Try it.) If you set up a vertical ruler at the point where the ray strikes the mirror the angle $A B D$ will always be equal to the angle $D B C$.

The teacher should cut a piece of stiff paper so that two of its edges make an angle equal to $A B D$; and by turning the paper prove that it is equal to the angle $D B C$.

Reffecting Telescopes are made by using curved mirrors to collect the rays of light and to direct
them to the eye of the observer who uses a magnifying eyepiece.

Fig. 66. Kaleidoscope.-Images of a candle made by two mirrors at right angles to each other. There are three images. (Try it.)

If two mirrors a and b are placed so that they make an angle of 60° with each other like this $\int_{b}^{a /}$ the reflections will be six-sided. Anyone can try this experiment by I. folding back the lid of an upright piano till the lid and the top make an angle like this $/$ lid $/$. The polished lid and top are mirrors. II. by putting a shawl over the lid so as to make a dark box with the two ends open. III. by
phoing his eve at one end of the tringular box while a friend nover somu bright object like a skein of worsted, a hatich of keve and so forth to and fro at the other end. (Try it.)

Refraction of Li\&h. I ray of light in the ais moves in astraght lime. When it moves firat in ar and then in water the x, y " bent just where it enter: the water. Take a tumbler half full of water and put a spoon in 3 . Llold it in front of yon at arme: length so that the top of the water in on a level with your eye. (Try it.) The spoon will look as if it were hent out ot shape-as if it were broken. The water braths wotract--the light.

Retradion , tomat by a Prism:

Fig. 67. Atriangular priom of mlacs. Laoke at it entwose and you see atriangle as in the let-hatod picture. The gotendants to chandeliers are often prisms.

When a ray of light passes through ayprism of glass it is also bent out of its course.

Refraction of Light by a Lens.-A lens is a piece of glass with curved sides (a burning glass, for instance) which is used to bend rays of light from their first course into a new one.

Fig. 68. The light from the candle strihes the prism and is bent down so that the man sees the candle not where it is, but raised is the air.' If you have a prism, try it.

Microscope.-If you take a burning glass like that in Fig. 70 and use it to look at this page of your book you will find that it magnifies the letters.
(Try it.) A microscope is a lens or a set of lenses used to make small things appear larger.

Microscopes are used by geologists to study the structure of rocks; by physicians to study the bacteria that produce diseases, and so forth.

Fig. 69. Hold a burning glass in the sunlight and it will bend the rays of the Sun so that all that fall upon it meet in one point-which is called the forus. A burning glass collects the Sun's rays into a small spot of light. All the rays that fall on all the surface of the lens are brought

Fig. 70. A burning glass. to a single spot.

Fig. 71. Glass lenses of different shapes. Spectacles are lenses of these kinds. The different kinds are used for eyes with different sorts of troubles. Near-sighted eyes need concave glasses, far-sighted need convex glasses.

Telrscope.-A telescope is an apparatus used to make far off things seem near (a spy-glass is a small telescope; so is an opera-glass). It is usually made of two, or more, glass lenses. The first lens collects the rays from the distant object at its focus and forms a little picture of the object there. The second lens magnifies the little picture. The two leuses together form a telescope.

In an opera glass, one lens is at the large end; the other (or others) serar the wmall end. It magnifies from 3 tr) 8 timen. It make things seem 3 to 8 times nearer than they really are.

A lange telescope such as astronomers nee to lnok at the stars can be made to magnify about a thousand times. It makes the Mors seem about a thousand times nearer than it really is.

The Solar Spertrum:

You can hold a prism in the sunlight so as to get a band of colored light. (Try it.) There will be seven colors, Violet, Indigo, Blue, Green, Vellow, Orange, Red -VIBGYOR (remember this word and it will recall the order in which the coloss come. It is the order of the colors in the rainbow). The prism does two things to the sunlight that falls on it: I. It bends the light into a new course ; II. It separates the light into seven colors. Sunlight is made up of seven colors and no more. When they are all together they make what we call white light, that is, sunlight. It is just as if every beam of sunlight were made up of seven strands of silk thread -zibgyor. When they are all in one bundle they look white. Separate the bundle into parts, and you have seven separate colors-violet, indigo, blue,
green, yellow, orange, red. A few pyperiments with a prism will prove this. Looking at the rainbow proves it. The white sunlight going through the drops of rain (which act somewhat is if they were piams) is separated into seven colors.
 rate of $186,0 x$, miles in one second of ith, - -amon matantaneously: almon, hat not quite. It conee wastrm the Moor in lems than tho acomd, bent it the eight minntes to come trem
 apoarived the tarth this ver, instunt. A ray of hest junt
 minute. Eight minute are sequired to make al poum of

 strect lamp at pratically the very motant when it is bighted. Youste the fhath of a ext the motant it is fired, though ?on do not bear the sound tom seme'. ${ }^{\text {and }}$.
sound.

Sound-wazes.- When a chureh-bell is struck by a hammer a sound is hrard. Nomatter where you are-north, south, east, west of the bell--you hear it. Close to the kell the sound is loud; two miles away the sound is faint. Anywhere within two miles you hear it. This proves that waves of sound travel outwards from the bell, in every direction, somewhat as waves of water travel outwards from a stone thrown into a pond. The waves are more marked where the stone struck the water; less marked as they go out:rard. (Try it.)

Finally they die away somewhat as the sound of the bell dies away.

Fig. 72. Waves of water made by a stone thrown into the cenafer of a pool hook like the picture. The two wavy lines would not be seen, of couse. They are drawn to show the heights of the waves at difterent distancts from the center. The further you go from the center the smaller is the wave.

Sound is Caused by a Vibration.-The hammer strikes the bell and the whole bell trembles-ivibrates. If you touch the bell with your finger the vibration can be felt. If you strike a thin tumbler with a spoon there is a sound. If you hold your
finger lightly against the glass you can feel it tremble--vibrate. (Try it.) So long as the trembling goes on the sound is heard.

Fig. 73. A wine glass filled with water vibrates when a fiddle bow is drawn across its edge. Touch the glass lightly with your finger and notice that at foun places there are no waves. (Tryit.) Stop the trembling by clasping your fingers round the glass and the sound will stop. (Try it.) To have a sound you must first have vibration of some sort. A vibration is a quick trembling to and fro, like that of a bell when it is struck.

Musical Instruments. - A drum makes a sound because the parchment drum-head vibrates when it is struck. The air vibrating regularly in an organ-pipe makes a sound. The string of a violin vibrates when the bow is drawn across it, just th the string of a piano vibrates when the hammer strikesit. Yon can feet the vibrations of the piano strings by putting your finger lightly against them. (Try it.)
The vibrations of all musical instruments are regular-rhythmical-and the sounds are pleasant. Such sounds are called musical. Irregular vibrations, such as are made by beating on a fence with a stick, are unpleasant-we call them noises.

A way has been contrived to count the number of vibrations If the strings of a plano. It is found that the middie C of the piano vibrating 256 times

Ey = is made by a string vibrating 256 times in a second; the C next above

is made by a string that vibrates 512 times in a second. The shorter the string the more vibrations it makes in a second. The shortest strings in a piano. the ones that rive the highest notes, make about 4,000 vibrations in one second; the longest strings, that give the lowest notes, make about ,32.

The sounding-board of a piano also vibrates when the string is struck and makes the sound louder; and all the air inside of a filldle vibrates when the string is plucked. When you are at a concert recollect that all the air inside the concert-hall is set into whration every time a note is played on the violin. Each stroke of the fiddle-bow sets tons of air into motion.

Singing.--You have in your throat two cords, muscles, called the vocal cords. By making them act you can change the quickness of the vibrations of the air that passes through your throat as you sing. Very deep bass sounds (men's voices) are made by air ribrating about 200 timas a second; the very highest notes of a woman's wice are made by air vibrating about 2,000 times in a second. Learning to sing is mainly learning to control the vocal cords.

Sound Travels Through the Air.-Open the window of a room and send a buy to beat on the fence with a stick. You hear the sound which is brought to you by the air. The air cannot. go through the window when it is closed. Close it then; and you cannot hear the sound, though you can still see the stick striking the fence.

If the fence is very near, and if the boy strikes very hard somelimes you can hear the sound even when the window is shut. That is because the air outside of the window makes the window-ghass vibrate, and because the wadow-glass, in turn, sets the air in the room into vibration. Sounds urially come to us from the soundiay hody (taing) by vibtations in the air.

But sound travels through solids too. If you hold a watch close against a long plank a boy at the other end of the plank can hear the ticking much plainer than if you hold the watch a foot away from the plank. (Try it.) The ticks of the watch travel through the plank in the first experiment; through the air in the second. If a railroad train is far away, you can hear it better by laying your car close to the rails than you can by standing up and listening.

Velocity of Sound.--Light travels almost instantaneously trom place to place. Y'ou see the flash of a distant gun the moment it is fired. But the sound does not come at once. If the gun is 1,100 feet away from you the sound comes one second of time after the flash. If the grun is 2,200 feet away the sound comes two seconds after the flash. Sound travels $\mathrm{x}, 100$ feet (about a fifth of a mile) in one second. It travels a mile in a little less than five seconds.

Any two country boys who own a watch and a gun and who can get a mile apart can prove this. City boys are not allowed to fire guns in the streets but they can recollect that sound travels a distance of about 500 of their steps in each and every second of time.

ELECTRICITY.

Experiments.-Before beginning the experiments you should get

A piace of exding wax about 4 inches. long.

- A glass tube or a glase rod abont 4 incher long.

A little picce of elder pith wilh a silk thacal ran through it so that it can be hung to a long wail in the wall, or to the ena of a stick projecting from a shelf (put a heary book on one ent of the etick to keep it ateady),

A hitfle ball of sealing wax fastened to a silk thread.
A liftle glass bead tastened to a silk thread.
A pound of resin; lave it melted and poured into a shallow wooden box to cool. (Sice Fig. 75.)
A. plece of fur-a cat-ikin will do very well.

Electricily by Firiction.- Now try these experiments one by one :

1. Strew some small bits of paper on the table and hold the sealing-wax, then the glass, near them. Nothing happens.
II. Rub the sealing-wax smartly on the fur or on your sleeve, and then hold it near the bits of paper. It attracts the paper. The little bits of pieces fly to the wax and stick to it.
III. Rub the glass rod smartly on your sleeve and hold it near the bits of paper. It attracts the paper.'

Whenever a piece of wax or glass is rubbed it gets a new power. It will attract light bodies such as bits of paper. Before it was rubled it did not have the power. It is the rubbing-the triction.
that, somehow, gives the new power to the wax or glass.

The ancients, thousands of years ago, knew that if amber was rubbed it would attract light bodies, such as bits of chopped straw. The Greek name for amber is Eliciron, and from that word we get our name of electricity.

Electricity is the something that gives a piece of glass that has been rubbed the power to attract pieces of paper.

When sealing wax is rubbed you get electricity of one sort; when glass is rubbed you get elec-

Fig. 74. A pith-balf hung by a silk string is repelled by an electrified stick of sealingwax, or glass. tricity of another sort, as the following experiments will show :
IV. Fasten a little pith ball so that it can swing freely. Hold a piece of sealing-wax near it. Nothing happens if the wax has not been rubbede Hold a piece of glass near it. Nothing happens if the glass has not been rubbed.
V. Rub the wax and then hold it near the pithball. The ball is first attracted and then quickly repelled. The wax repels the ball.
VI. Rub the glass rod and quickly bring it near to the pith-ball. The ball was repelled by the rubbed sealing-wax, but it is now attracted by the rubbed glass. Wax-electricity seems to be different from glass-electricity. ${ }^{1}$ When one repels the pith ball the other attracts it.on
VII. Rub the glass first, and it will repel the pith ball; then quickly rub the wax and it will attract the ball. Wax-electricity is certainly different from glass-electricity. You have proved it to be different.
VIII. Rub the little sealing-wax ball with a piece of fur; rub the stick of sealing-wax and bring them close together; they repel each other. If now the glass rod be quickly rubbed it will attract the wax ball.

1X. Kub the glass bead and bring the rubbea glass rod near. They repel each other. The rubbed stick of wax will attract the ball.

All these experiments taken together prove that:
When bodies are charged with like electricities, they repel each other [wax repels wax, glass repels glass].

When bodies are charged with unlike electricities, they attract each other [wax attracts glass, glass attracts wax].
X. Take the wooden box filled with melted resin and beat or rub it with a pieçe of fur. Now put

[^2]your knuckle close to the resin and you will feel a little electric shock. Some of the electricity in the

Fig. 55. Taking a spak from a box of resin which has been electrified by beating it wath a piece of tur.
resin has gone into your body. If this is done in the dark you can see a little spark pass; and whenever the spark passes there is a lithe crackling noise. The spark is just the same thing as lightning; the little noise is thunder. Your knuckle was struck by lightning.

If you break a piece of sugar while yon are in the dark you will see \mathfrak{a} faint light which is caused by electricity. Breaking the sugar is a kind of rubining of one surtace on another. If you rub the fur of a cat with your hand you can electrify the rat and can take sparks from her back or from her nose (much to her surprise !) Rubadry lamp-chamney with a woolen clotin and you can take sparles from it with your knuckle. In cold dry weather you can scuffle your shoes over the carpet and clectrify yourseliso that you can light the gas by a spark between your knuckle and the metal gas-fixture. (Remember these things and try them all when the weather is cool and dry.) Notice that in such weather a rubber comb passed through your hair will attract the hairs and make them rise ap.

Fir. 7G. Benjamin Franklin bringing lighoniou fom the (louds, 1752 .

Witil the tinc of Betifamin Franklin (1752) little more was known of electricity than what you have just learned. Electricity conld lie made by rubbing wax or glass: and there was lightning during a storm. Fran' in clectrified a hite by sending it up into a thurder-storm, and from a key tid to the kite-string he got sparks ${ }^{1}$; and he proved that the
${ }^{1}$ Ycu must not try this experiment. It is dangegous, and your might be killed, as treen have been, in trying it.

Fig. 77. One cell of an electric ${ }^{\text {ont }}$: y The gl...s jar contains two platen, ane of ropprr, the other of zine, and $\%$ liquid, which i 2 diluted sulphuric acid. A wire is ferted to each plate. The larger the plate the more electricity Hows when the two wires are joined.
electricity in the cloudswas the same kind of thing as the electricity that he could make, anytime, by experiments.

Electricity"from
Batteries. - Now-a-days electricity is used for sending messages by telegraph; and it is used to light lamps. to drive street cars, automobiles, elevators, etc. The electricity for telegraphs is obtained from batteries; for lighting and power from dynamos.

Fig. 78. Several cells of a battery joined together (the zinc plate of one cell to the copper plate of the next one). A strong electric curnent flows through the wires when they are joined, no matter if the wire is short or long. If the wire extends from Boston to New York a current will flow and if we can make the current work telegraph sounders in the two cities we can telegraph messages.

You can prove that a current of electricity is flowing in a battery by putting one wire above your tongue, and the other below it (both touching the tongue). When you do this you will feel a little current every time you move the wires slightly. A current of electricity flows from the copper slip through the wire to your tongue, through your tongue and back to the zinc slip. The current runs round a circle of wire and such a circle of wire is called an clectric circuit.

The cell that you make is not as strong or as convenient as one that you can buy, and it is worth while to buy what is called

Fig. 79. A home-made electric battery. The glass goblet is filled with weak sulphuric acid and contains two slips of metal, one of $\operatorname{Zinc}(Z n)$, the other of Copper (Cu). To use it two pieces of flexible copper wire must be soldered to the two pieces of metal. a cell of "dry battery," " which is handy and clean to use.

[^3]
Electric Bells:

Fisid 8o. An electric bell outfit complete-puish-button (at the Wight), one cell of battery, bell and wire.

Fig. 8i. Plan of the circuit for an electric bell. Touch the push-button and the bell will ring. Touching the push-button connects the two ends of the wire, prewously unconnected. When the wire is all in one piece the electritity dows frim the battery into the efeotro-magret of the buy and makes the bett ring. If the batsery were strong enough yot coukt stretchich the
 when a button in New York was pushed.

The Electric. Telegraph.- Signals can be sent over a long distance by using strong batteries of many cells." Suppose ye have a "sounder" in Boston, and a key and battery in New York, and connect all three by telegraph wire strung on posts.

Fig. S: A magaph krow.

Whenever the key in New York is petsmid a cunrent of clectricity from the battery runs along the wire and into the coils of the sounder in heston.

The sounder becomes a magnet atd pulls down. the bar above it with a click. Let go of the key in New York and the sounder-magnet lets go of the bar. We can thus make clacks that can be heard in Bostorm by touching a key in New York. The current of electricity does the work. The Tilterräph . $12 p h a-$ bet.-An alphabet has been invented to use in sending telegraphic messages. The shortest touch of kex makes a short click which is called a dot in'a longer touch makes a dash -...
miysics.

Fig. 84. Plan of a telegraph line between Boston and New York. and so on for the rest of the letters. In this way any word can be spelled out to the ear in Boston

Fxg. 85. "elephone. Each per son who speaks lasaninstrument iike this. by touches of a key in New York. A key (on the same circuit of wire) in Buston wheff touched will spell out words to the ear in New York. It is in this way that telegraph mes:sages are now sent.

The Telephonc.-.The telephone is a kind of telegraph. It sends the vibrations of your voice instead of sending the clicks of the telegraph key, and this is done was follows:
I. You call the person you wish to speak to (or the central office) by ringing an electric bell (D).
II. You speak into your " transmitter"(A). This is a box containing a very thin disk of metal. When you speak the vibrations of your voice make this disk librate and the vibrations of the disk travel along the wires and reach the telephone which your friend is holding to his ear. In his telephone (and in yours (B) too) there is a little metal disk which vibrates just as your voice vibrates. The air in his telephone vibrates, then, just as your voice did; and it makes the same sounds that you made. It repeats your very words, even your whispers.

The Dynamo.-A dynamo-electric machine is a set of magnets made to revolve rapidly by a steam engine.'" When

Fig. 86. A Dynamo. they revolve they create a current of electricity. Wires led from the dynamo. carry the current Wherever you wish. You can use the current to light larmps, or to run elec: tric cars, or to drive any machine you choose. The more powerful your steam engine. the stronger current you can get and the more work you can do. It is the steam engine that does the work, after all.

Fis 87. An Electric Railway. The Dy namo (A) w the power. house sends a current of clectricity along the wire. Fach car takes the electricity it needs by the trolley and motest underneath the floor of the car drive the wheel

Fig. 88. An eléd tric lamp; a glow. lamp: nuchas is used in houses. A current of rectricity fromadynamo heats a little strip of bamboo whitemot, and the glowing of this. strip gives the light.

The dynamo simply changes the energy of the steam engine into electricity and the wires carry the electricity to the places where you wish to use it.

The Electric Railaur.-A dynamodriven by a st: mengine in a power-house (so-called) is used to send a current of electricity along an overhead wirr, and the electricity is led from this wire by a little wheel (a trollcy) to electric motors underneath the car. These motors turn the car-wheels round and make the car move along the track.

Electric Lighting:-A current of electricity is sent out from a power-house by a dynamo driven by a steam-engine. The current is led along wires
to light the street lamps (arc lamps, they are called) in cities; and into houses to light the glow-lamps (incandescent lamps, they inc sonetimes called).

MAGNE'IISM.

Natiural Magnets.-In Magnesia, a district of Greces, the ancients found a kind of iron ore that attracts little pieces of iron filings, tacks, etc., when they are brought near to it. The name "magnet" comes from the name of the place"Magnesia." Natural magnets are found in many other parts of the wolld. To try the experiments described in this book it will be best to buy from any toy-shop one of the manufactured magnets shown in the pictures.

Fig. 89. A bar magnet dipped in iron filings. It is shaped like a bar. The ends of a magnet are called its poles.

Fic. 90. A horseshoe magnet: it is shaped like a horseshoe. The piece of steel across the ends is called the keeper, or the armature.

Experiments.-Spread two or three needles on a tahle and pick them up with the magnet. (Try it.) Try to pick up some brass pins. If you make a little pile of bits of irom wirc, steel needles, coppel wire, brass wire, lead, nand, coal-dust, and so forth the magnet will pick out the iron and steel and nothing else. Whatever the magnet picks up is ion on ateel. There is a machine made which sorts small pieces of tron out of a mass of crushed rock by a large magnet. If they were not picked ont in this way you could not get them at all. Surgeons use magnets to take needles, tec., out of wounds. The mariner's compass is nothing but a magret (page y9).

Marnctism. . A magnet, then, is something different from a piece of iron of the same shape. There is some force in the magnet that reacher out and attracts iron; somewhat as the forec of gravity (see p. 4^{6}) in the Earth reaches out and attracts heavy bodies (things). Notice that it is the cnds of a magnet that attract. The middle parts scarcely attract at all. (Try it.)

Take a pane of glass and lay it on two piles of books, one at each end. Now lay a needle on the glass and move the magnet underneath. You will see that the magnet acts through the glass (try it); and it will act through paper or copper or cloth--through anything, in fact.

Artificial Magncts.-Take a fresh needle from the case and see if it will pick up little bits of iron. It will not. Now lay the needle down and rub it with the magnet, lengthwise, from the center towards the point for a minute. Then rub the needle with the magnet from the center towards the eye-end for another minute: The needle will now
pick up iron filings. (Tryit.) It has become a magnet. You can make mugnets in this way. You can magnetize the blade of your pen-knife, if you like. The first artificial magnets were made from natural magnets. Now-a-days we make one artificial magnet from others, or by electricity as you shall hear later.

Fici. 91. A bat magnet wos latit on a pane of glass and fine iron dikn", were spreat all over the glass. "The maphet atracted the bet of iron. Atter a while the magtet was litted up and the pieture was taken. Notice that the enos (poles) of the magnet attracted the ruost things and that the middle attracted the fewest; all over the glass the filings are arranged in curves. Kon can try this experiment yourself. ('Fap the edge of the glan gently with your finger nail to keep the filinge from sticking to the wlass.)

Exproimenis.--Take a iresh needle, lay it down, nad man motize it by moving the magnct from the eye-end towards the point. (Rub) it only in this direction.) Magnetize a second needle th exactly the same way. Now you have two small wagnets, just alike. Either of them will pick up iron filugs. (Try it.) Tie a thread round the middle of one of them and hang it from a long nail in the wall, or from a gas bracket, so that it is horizontal and can swing freely. Let it come to rest.

Now take the second needle (call it No. 2 for short) and try theare expeliments and see what happens.

Touch the eye-end of No. 1 with the point end of No. 2 ; they attract.

Touch the pointend of No. 1 with the eye-end of No 2, they attract.

Touch the point-end of NoI with the point-end of Nu. 2 : they repel.

Touch the eye-end of No. I with the eycend of No 2; the: repe!.

These marnets are junt alihe; the eyrend pulw (omdri ot rath are alike, the poont-end polen (end-) of rath , wre alike. They were made in the same way and thi must be true. But the experiments have shown that the everna polvate not like the point-end poles, and the experiments hate also shown that like poles of two magnets repel each other: unike poles of two magnets attan tach other.

You must try the experiments over and ner till you thotoughly underntand them. - It in moch eanes to anderstand the experimentis than to understand a description of them.

If any sewing needle is laid gent? on the surface of water the needle will float. (Try it.)

Fin. 92. Amagnetized sewing-needle floating on a bowl of water.

If a magnetized needle is laid on water it will furn till it points to the north. It is a compass. (Try it.)

If you take another magnet and bring it near to the floating compass-neredle you can easily prove that like poles of two magnets repel, unleke poles attract each other. (Try it.)

The Mariner's Compass. -If a magnet is suspended by a string (or balanced on a sharp point) or floated on water. so that it can swing frecly, it will point to the north. The Chinese knew this centuries ago and used compasses to steer their ships by. Their inven-

Fig. 93. The Mariner's Compass. The needle always points to the north, and therefore sailors can steer by it.

Fig. 94. Anelectromagnet. It is a piece of ironwrapped with wire. While a current of electricity is flowing linrough the wire it is a magnet: the instant the current stops flowing it is a magnet no longer.
tion was brought to Europe and has been used by our sailors since A.D. 1302.

Columbus (1492) steered west from Spain by the compass and discovered America. If you have a compass see what will happen when you bring a magnet near to one of its ends. (Try it.)

Electro-Magnets.-You know that a current of electricity from an electric battery flows along a telegraph wire so that messages are sent from Boston to New York. Suppose you took a piece of soft
iron and bent it into the shape of a V and wound wire anound it, as in the picture and let a current of dectricity flow through the wire. You would find that while the current is flowing (and no longer) the iron would be a magne. Stop the current and the iron is irm and nothing more. You can see an electro-magnet working in any telegraph station. The bell that rings when an electric: push button is touched is an electric hell. Its hammer is moved by an electro-magnet. (See page go.)

MACIINES.

The Pulle. \cdot....A pulley like the one in figure 95 is often used to change the direction in which a rope is lect. A pull of one pound on the rope will lift one pound and no more.

Fre. 95. A common pulley.

Fig. 96. These two pulleys are rigged so that a pull of one pound on the right-hand rope will raise two pounds attached to the left-hand pulley., (Try it.)

Fig. 47. A stone raised by a crowbar used as a lever. The point where the crowbar rests on the ground in called the fulcrum of the lever-the point about which it turns.

The Lever..-Any stiff har-a crowbar, for in-stance---is a lever. By using a lever you can move a stone entirely too heavy to be moved by hand.

Fig. 98. A little hoy on the long end of the see-saw balances a heavier boy on the other end.

A common pair of scales is a lever in which the two arms are equal. One pound in either scalepan balances one pound in the other. The fulcrum of the beam is its middle point.

Fri. 99. A keiglit ot one found can be made to bakance a wight of tho pounds if it is hung at the end of a levet twhe as ionh. (Try it by mathing astick with holes every six inchen, as in the froture, and putting a round iton uail (F) tor the stitk to move ond. Pat the pin in ditterent hemen and stex what neights will balance each other. The point \neq in titu tultum.

Fig. roo. A hammer: A lever with a short arm near the nail-the fulcrum is the point where the haminer touches the floor-and a long arm from the Hoor to where your hand takes hold' of the handle.

A hammer is a lever when you use it in pulling out nails. A pair of scissors, of pinchers, of nut-crackers, are levers. The fulcrum of each one is the place where the two parts are joined together. A butcher's steelyard is a Jever in which a little weight at the end of a long arm balances a larger weight at the end of a shorter arm.

The Inclined Plane.A weight too heavy to lift

Fic. ifir. A barrel too heary to lift may be rolled up an in clined plaze.
may be rolled or slid up an inclined plane. The work is done a little at a time. A railway can be

Fig. 102. A railway on an inclined plane in the Rocky Mour. ** tains. The altitude is conquered gradually.
laid up mountain by making it curve so that the muuntain is climbed a little at a time.

Frs. ro3. A screw-pres, : By turning the screw a great pressure can be put upon the books-a little at a time.

The Screw. - A hole can be bored in a piece of hard wood by a gimlet when yon cannot possibly make a hole by a smooth straight hrad-awl. The screw is made up of an inclined plane wound round a straight line. It enters the wood gradnally-a little at a time.

The Common Suction Pump.-This picture and the three following itt explain the way in which the common pump raises water from a well.

In the picture I. the pump is empty. There is no water above the level of the top of the well. We wish to raise the water as high as the nozzle of the pump. HIN shall we do it? Recollect that the ail-the atmosphere-is pressing on the

Fus. 104. I. A common pump. Its barrel is empty of water but full of air. A sut tion pipe (E) with astainer (Γ) on the "end of it leads down to the water in the well. At the top of this pipe is the surtion-zalyema little door opening upwards (D). Above
 wisht. The fiston-zalve (C; is a little doompopening upwards. The piston is moved up and down by the fump handle (not drann in the pictume).

Fig. 105. $I T$ a common pump : The piston is movipg upwatds. When the piston has reached the lop the baryite ot the pump will be neally full of water.

The upper valve will be' shut, the lower one open.
Fig. ron. /1I. A common puhp: The piston is now moving downwards. Its valve is opened and some of the water rises above the piston.

Fig. 107. IV. A conmon pump : 'The' piston is' now moving upwards, and some of the water in the barrel has betn hifted high enough to flow from the spout.
upper surface of the water in the well and that the suction-pipe (E) and the whole pump barrel is mill of air pressiny bown. Air, like all heary things, presses downward. by its weight. If we can take this air oit, the air over the well will press the well. water me, in: as the quiskitum is pressed up in the baromet. (ane page rai).

I1. Let us raise the enmat piston then. As this rises its paston will lift all the ar ahos it. bulow the pinton the barel will be emper as air and the water irom the well will rush ur and fill it. The air above the well-water presses it up.

BOOK III: METEOROLOGY.

The Atmosphere. -The Earth that wề live on is composed of land and water and surrounded by'an atmosphere of air. The land and water we can set, but the air is invisible. We know it is there, however, because clouds float in it just as corks float in water. Thewindsare nothing but air moving past us.

Fig. 108 . The atmosphere is an ocean of air lying above the land and sea. We live at the bottom of the ocean; af ais just as sone fishes live at the bottom of the ocean of weyer.

The higher you go in the atmosphere the , westair there is. It is easy to breathe anywhere near the level of the sea. On the top of a mouathin a mile high (5,280 feet) you begin to feel the there not
air ènough; on a mountain two miles high you feel this very distinctly : on a mountain three miles high it is very difficult to breathe; and in the Andes or Himalaya mountains, where men have gone as high as four miles, it is hardly possible to breathe at all. Men have gone somewhat higher than this in balloons; and the higher you go the less air there is. Even birds do not Hy more than four miles high.

Height of the Atmosphere.-Shooting stars do not begin to burn until they have come from spice well inside the Earth's atmosphere (see page 39), and it has been proved that some of them begin to burn about 75 miles above the Earth's surface--theretore the atnosphere must extend at least as high as 75 miles. There is some air at that height, though very little indeed.

Air is a Mixture of Onygen and . Vitrogen Cus. -Chemists have proved that air is chiefly a mixture of axygen and nitrogen gas, together with some other gases and with the vapor of water. Without the oxygen men and animals could not live. 'They need it to breathe.

Air is ${ }^{H}$ cavy-The simplest way to prove that air has weight is to take a tight box with a stopcock and to weigh it when the stop-cock is open and it is, full of air, and then to pump all the air out of the box and to weigh it after the stop-cock is closed. frubic foot of air (that is the air in a box $12 \times 12 \times 12$
at the level of the sea. A cubic foot of water weighs about 67 pounds.

The Weight of the Atmosphere. Each cubic foot weighs something. Near the level of the sea a cubic foot weighs more than an ountr: higher up, it weighs less; higher up still, it weighs less still. Imagine a tall column of air taching from the ground to the "pp of the atmosphere (see Fig. rog) and matead of thinking of cubis feet let us think of cubic inches (ry26 cubic insthers make a cubic toot). The base of the column ($1 / 3$) on the ground will be one square inch. On the top of that is a cubic inch of air pressing down by its weight; on the top of that another: and then another ; and so on. It will be proved in the next paragraph that the weight of each

Fric. xocy. The atmosphere presses the surface of the wropud about 15 pounds on "every square inels. and every such column of air is about fifteen pounds. Each and eevery square inch of the Earth's surface and of the surface of everything up on the Earth is pressed about fifteen pounds. The pressure is not only downtwirds but sidewise, too, because gases and liquids press equally in all directions.

Fic. in. Fill a tumbler partly tull of water, cover re closely with a piece of writing paper, hold the paper with your hand and turn the tumbler over. Now take your hand away and the paper will stay in place. The weight of the water is pressing it down, but the air outside the tumbler is pressing it up and keep, it in place. (Try it - you may have to try several times in ordertlo get the paper to fit tight encugh tokeeptheair out of the tumblet.)

Fic. IIi. Wet a pitace of leathet lied to a string (a nucher). Press it tight to a picce of nood. Yisu c.andift thewood. Why? liecause the air pres.ach the sucker with a pressure great. $e^{2} r$ than the weight of the wood. If it did not, the woort would fall.

Fiu. 112. Fill the tumbler as in Fig 110, cover it, imn it ower, put it in a hamin of water, and carefully draw the paper out. The water in the tum. ble will stand above the level of the water in the basin. Why? Besause the air is pres. sing on the water in the busin and not on the water insulfe the tumbler.
" The Barometer.-Why does the quicksilver stand in the fubebout thirty inches above the quicksilver in the basin? (Fig. II3.) Because the air is pressing down on the basin and forcing the quicksilver uphedards. It goes upwards a certain distance (about 30 inchess) until the weight of the quicksilver in the tuظe, pressing downwards, just balances the pressure of the atmonphere upwards. If the glass tube is one
square inch in area the quicksilver in it will weigh 15 pounds. Therefore the pressure of the air (which is balanced by this weight) is 15 pounds on a square inch: on this square inch and on every other one near the level of the sea. If you try this experiment on a mountain the quicksilver column

Fig. 113. Fill a tube closed at one end and ahout 34 inches long completely full of quicksilver; there will be no air in it. Cover the tube with your thumb. Carefully and slowly turn the: tube upside down and put the end of it in a basin of quicksilver. Now take away your thumb. The quicksilver will stand about 3o inches high in the tube.
will not be so high; it will weigh less ; because the pressure of the dtmesphere (which it just balances) is hoss.

 silyer the barometer tube must be mort than j^{\prime}. inctien lone and it must stand whight.

Mcasispement of IHcights ber the Barometer.-..If you are at the level of the a a the barometer will stand at about 30 inches. If yoû go up in a balloon or ascend a mountain there will be less air aboye you and the barometer will stand lower, consequently. On a mountain 7,000 fect high the barometer will stand at about 24 inches. A balloon has carried men as high as 3 r .500 feet (nearly six
miles) and the barometer stood at $7 \frac{1}{2}$ inches. There was not air enough to keep the balloonists alive. They breathed oxygen carried up with them in metal boxes. The heights of mountains are usually measured by barometers, not by levelling.

Fro. 115. An Aneroid Bar ometer, which measures the pressure of the air not by the height of a quicksilver column but by the changes in shape of a metal box (inside the outer case). The box is empty of air, and is sealed tight. As the air presses upon it it changes shape. The needle is arranged so as to mark the changes and to tell the height at which a quicksilver barometer mowld stand (see the inner circle of figures in the picture). The onter circle of figures shows how high above the level of the sea you are when the baronneter points at each figure. When you are at the level of the sea the harometer stands at about 30 inches.

At $2, n o f$ fect altitude the barometer stands at about 28.5 inches."
At 4,000 feet altitude the barometer'stands at about 27.0 inches.

At 6,000 feet altitude the barometer stands at about 25.0 Inches
At 8,000 feet altitude the barometer stands at ahout 23.0 inches.
The Barometer is a Weather-Glass.-The barometer at the level of the sea usually stands at about 30 inches: in very fine clear weather it often stands higher; in very bad weather it stands between 28 and 29 inches. By watching the barometer you can tell something about the weather you are going to have. If the barometer is rising it is likely that the weather is going to be tine. If the barometer is fading below 29 inches it is likely that you will have rain (ste Fig. I 55, where the words are written on the dial-phate).
U.S. Weather Bureau Predictions of Weather.In Washington there is a Govermment office called the Weather-Bureau. Several times a day this central office receives telegrams from cities all over the country telling the height of the barometer, of the thermometer, the direction and force of the wind, etc., at each and every one of the cities-at San Francisco, Denver, Omaha, Chic ago, St. Paul, New Orleans, Mobile, Charleston, New York. Boston, Bangor for instance. Several times a day all these things are marked on a map.

Every few hours a weather map is made and the tracks of storms are drawn. Therefore the Weather Bureau can tell us beforehand when we are likely to have a storm. Farmers can take care of their crops in time; fruit-growers are warned of, frosts; railway managers know when to expect
snow ; sailors. know when dangerous winds are to be feared. The Weather-Bureau predictions are useful in a thousand ways.

Fif; 116. One of the Washington weather-maps.
The red lines join places where the barometer ss the same.
The blue lines join places where the thermometer is the same.

The reddest regions have the highest barometer.
The bluest regions have the lowest temperature.
The dotted regions are being rained on.
'The lit' \pm arrows fly with the wind (point to the place towards which the wind is blowing).

The red figures give the height of the borometer.
The blue figures give the height of the thermometer.
The long dotted line from Manitoba to St. Paul shows the track of a storm moving eastwards.

Water-Vapor.-The air contains morsturevapor of water--nhich is invisible, just as steam is invisible. Most of this moisture comes from the

Fig.in7. Diopsot water will condense on the outside of a glass of ice-water (Tryit.) The little drop, on the outside come from the warm air of the room. sea. Invisible vapor rises from the surface of the ocean into the air. We cannot see it, but we can prove that it is there, in this way:

We know, in the first place, that warm air can hold more water-vapor in every cubic foot than cold air can hold. If we cool any mass of air some of the water-vapor in it will be squeezed out by the cold.

If you are in a warm room on a cold day you will see that the cold window glass is covered with moisture. The air near the glass is cooled and some of its vapor of water is condensed in drops on the panes.

Mists and Fogs.-If warm air with plenty of invisible moisture in it as blown by the wind across a cool valley or lake some of its moisture becomes visible as mist or fog.

Dew.-Some of the moisture of the air condenses upon cold solid bodies and we call that visible moisture dew. You can see it in the morning before
sunrise covering bricks, the grass, plants, with thousands of little drops of water. When the sun gets high all the air becomes warmer and the visible dew is taken into the air as invisible vapor. A tumbler full of ice-water held in a warm room will soon be covered on the outside with hundreds of fine drops of water (see Fig. 117). Why? These drops do not come through the glass from the icewater; they come from the invisible moisture in the air ot the room which is cooled because it is near the cold tumbler. (Try it.)

Frost instead of dew results when the temperature is below the freezing point.

Fig. 118. Clouds along the (cold) face of a cliff in the Yo. semite Valley in California.

- Clouds are formed just as fogs are formed by the cooling of the air and moisture by the meeting of cold and warm currents, or otherwise. We call them fogs when they are near the surface of the Earth, clouds when they are high above it.

Fig. 119. Cirrus clouds. Such clonds are usually high up in the air-ahout five to six miles. They are formed of very small crystale of ice-frozen moisture.

Rain.-The very small water drops in a cloud often unite to make larger drops which fall in rain.

Hail.-If they are frozen on their way down we call the frozen rain drops hail.

Snow is frozen water-vapor, not frozen rain drops. If you look at snow flakes with a microscope, or a strong magnifying glass they always have the shape of a six-sided crystal. (Try it.)

Sleet.-If the falling snow flakes are driven about by the wind they lose their shape and they fall as sleet.

RAINFALL OF THE UNITED STATES. 119

Fit. 120. Photograph of snow flakes.
The Rainfall of the United States.-The amount of rain (and melted snow) falling at different cities in the United States is measured in every storm, and the whole amount that falls in any year is the annual rainfall for that year. It varies from year to year at the same place, but not very much. At New York, for instance, the annual rainfall is usually more than 40 and less than 50 inches: That is, if all the rain of a year that fell into a barrel were kept it would more than fill a barrel 40 inches high. Study the map (Fig. I2I) carefully and see what it means.

Fig. 121. The annual average rainfall of the linited States. Read the legend of the map carefully and compare it with the chart. Such a map is important. Wheat can not be raised on land where the rainfall is less than about $1 S$ inches, unless, indeed, the land is artificially irrigated.

Fig. 122, The snow-line in the Ro. ${ }^{3}$ y Mounains.

The Snow-line.-On very high mountains the snow never melts event in tropical regions. In the Arctic regions the snow never melts even at the level of the sea. The line above which the snow never melts is called the snow-line. In our Rocky Mountain regions it is about 13 ,000 feet above sealevel.

The hainhus.- A beam of white light that leaves a prism is spread out into the colors of the spectrum (page 77). White sumligh seflected within rain drops makes the rainbow.

Fig. 123. A sunbeam of white light leaves a rain drop as a bcam of colored light.

Fig. 124. The rainbow. It is formed by parallel rays from the Sun $\left(S, S, S^{\prime}, S^{\prime}\right)$ refracted hy rain drops $\left(a, b, a^{\prime}, b^{\prime}\right)$ cntering the cye. There are often two bows. H / l^{\prime} is the horizon.

Halos.-Most halos are formed by the light of the Sun (or Moon) refracted by crystals of ice in the upper air.

BOOK IV: CHEMISTRY.

Cimmistry is the science that tells us what things are made of; and it is useful in all kinds of manufactures. If you want to make gunpowder, or brat, to tan leather, or to make good steel, you must use a receipt that chemists have found out. The best way to understand chemistry is to make a few experiments.

The teacher hombl prepare the apparatus and try the experiments lofonehand, and repeat them before the class. As the sulbect so not an easy one the expeniments chosen ate purposely made simple. Ifte, to chevhere. it is sought to incul-
 thationim ad be done with children who have had no fommal instruction in chemintry.

The following inalorials are needed. Every bottle shouht be plainly labeled.

In small glass-stoppered bottles :
Sulphuric Acid: Nitric Acid, Hydruchlonic Acid, Acetic Acid.

In cork-sitnppered bottles:
Sulphur, irot wire or filings or tacks, copper wite or filinge or tackn, zinc wire or flings or tacks, quicklime, chalk crayons, scrapes of zinc, scrups of pure lead, gunponder, oxyd of manganese, sulphur matches, comatson table salt, phosphorus, fragments of mable, niter.
A pair of ncales, a few glass tumblers and dishes, corks, a glase stirring rod, filter paper, a spirit lamp, a panc of window glas6, glass jars, will be needed also.

Physical Changes: Solutions.-A pinch of common table salt is dissolved in a tumbler of water. The salt, which is a solid, becomes invisible in the liquid water. It is invisible, but all of it still remains in the water. If the solution is poured into a flat dish and set on a hot stove, the water will gro off in steam and vapor, and will leave the solid salt in the dish. (Try it.)

Mfintwes.-Mix powdered sulphur with iron filings by shaking them together in a boxim A magnet will attract the iron filngs and not the sulphur, and the two things can be separated in this way. (Try it.)

When salt is dissolved in water you can get the salt back again by heating the water; neither salt nor water is lost or changed. And when sulphur and iron are mixed you can separate them by a magnet. Neither is altered.

- Combinalion.-- But there are many things which combine when they are maxed tesenthr. You put in two things and they combine to make a third thing different from either.

Sulphate of Iron.-For instance, take one part (by weight) of iron wire, two parts of strong sulphuric acid in four parts of water and mix them. The acid and the iron will combine, and the iron will disappear.' Now filter the fluid and set it on a hot stove in a flat dish. 'The fluid will evaporate and will leave beautiful green crystals of sulphate

If the mixture is heated the action wilftemore rapid.
of iron-green vitriol, so called. The acid and the iron have combined to make a third thing-green vitriol-different from either. (Try it.)

Sulfhate of Copper.-Or again, take one part, (by weight) of copper wire, with ten parts of strong sulphuric acid (and no water). Mix them and boil the acid over a lamp until gas escapes rapid Let the mixture cool and pour off the liquiquatefully. Add water to the residue and evaporatette. sollan over a fire. Beautiful blue aystals of sulphate of copper - blue vitriol-will remaind The acid and the copper have combined to maku a third thing-blue vittiol-different from cither. (Try it.)

Sulphate of Zinc.-(Or again, take two parts (hy weight) of einc scraps and put them with three parts (by weight) of sulphuic acid to which there has been added ten parts of water. (Do not beat it.) When the action ceases you will have a lipudd. Evaporate it over a fire and crystals of sulphatow zinc will remain. Two things have combined. and a third thing has been made, different fromasithes of them. (Try it.)

Carbonate of Lime.-- A piece of chalk is made up of two things, namely, carboni acid and lime. Chalk is carbonate of lime. Pour some difuted sulphuric acid on the chalk. The carbonic acid, which is a'gas, will be driven off, in bubbles, by the sulphuric acid, and sulphate of lime will remain. (Try it.) It is as lime were a prisoner and the,
carboinc acid a soldier holdting him. Sulphuric acid is a stronger woldier and takes the prisoner away. Chemical Affinity.-The sulphuric acid has a stronger affinity for (liking for; fondness for) lime than the carbonic acid and always drives it off and bakes the lime prisoner in its turn. Vinegar is an ad (facetic acid). It, also, has a stronger afinity for F Whaty carbonic acid has. Pour some strong Wiven a piece of chalk (carbonate of lime) and warbonic acid gas will fly away in bubbles and acetate of lime. (Try it.) It is just as if解 iked to be a prisoner of acetic acid rather thian of carbonic acid.

- Lime has a greater affinity for acetic acid, than for carbonic acid, the chemists say. It is by studying these likes and dislikes of the metals chemists find out the easiest and the cheapest ways to manufacture them.
(hemical Manufactures.-All sorts of things, stuphowder, glass, soap, cheese, illuminating gas, bread, etc., arémade by receipts that the chemists have invented.

Gumpoz der is and gare of tharcoal, sulphur and niter. ${ }^{1}$ These thiee tangs are mixed-they are not combined untif the gunpowder is fired off. The they suddenly combine and make a gas. The gazin the bpre of the gun pushes the bullet put quiskly. If iferbest gunpowder is that which
 ${ }^{1}$ Niter a comblinationsiandotassium and nitric deld.
exactly how to make it. A canom ball can be shot ont at a sperd of 2,500 fert a second now-adays; a hundred years ago it was mot possible to shoot it out a quarter as fast.

Composition of Ais and W'ater.-Our dir--the atmosphere-is a mixture (not a combination) of two invisible gases called axygen and mitrogen. Whater is a combination (not a miviture; oit wo invisible gases called oxyon and hyothogen

Oxyen-Take a pirce of oxyl of manganese. It is mate up of oxygen gas combinted with manganese, whith is a metal. Heta it and the oxygen gas will go off in hables and cian be collected under a jar. (Try it.)

Fig. 12.5. Preparation of asturn miv. Heat pondered osid
 will be diven oft by the heat and an be collerted ove water in
 whber die jar so as to clowe it and heep the fow till it is wanteri for other experiments.

Nitrogen Gas can be prepared by burning a bif of phosphorus ' (not bigger than a green peat)
 with the hands as it produces very bad sores.
under a glass jar containing air. Air is oxygen and nitrogen mixed together. The phcsphorus burns up the oxygen of the air and all that is left in the jar is nitrogen gas.

Fig. 126. Preparation of nitrogengas. Float a little phosphorus in a saucer on a small piecc of wood in a jar of water. Cover it by a bell-jar. Set the phosphorus on fire. It will , burn up all the oxygen in the bell-jar and leave only nitrogen. Slip a pane of glass under the bell-jar while it is in the water and keep the nitrogen gas till it is wanted for use.

In roo pounds of air, 23 pounds are oxygen and 77 pounds are nitrogen. This is the air we breathe, and it is the oxygen in the air that keeps us alive. If an duimal (a mouse for instance) is put into a jar of nitrogen gas it dies. The nitrogen gas does not kill the mouse ; it is the lack of oxygen that kills it. A match will not burn in nitrogen. (Try it.)

Preparation of Hydrogen:

Fig. 127. Preparation of Hydrogen. The left-hand jar contains scraps of zinc in water. Through the straight tube with a cup at the top carefully pour in some strong hydrochioric acid. The liquid will begin to bubble all round the zincand the bubbles will rise, go over through the bent tube and be caught above the water in the closed jar which has been turned upside down and set on a stand. These bubbles are hydrogen gas.

What has happened is this: the zinc has taken some chlorine from the hydrochloric acid (which is chlorine gas combined with hydrogen gas), and formed chloride of zinc, which stays in the first jar. The hydrogen gas set free has gone over in bubbles, and is collected in the right-hand jar.
N. B. This is a dangerous experiment, because if hydrogen gas mixes with air the mixture may explode. Two things must bercarefully attended to : I The right-hand jar must be completaly filled with water and then turned upside down so that no air remains at the top of it, above the water. II. The bent tube (which, in the picture, extends too far into the left-hand jar) must not be put under the right-hand jar for some little time after the acid is poured on the zinc-not until it is sure that all the air in the left-hand jar is driven off, and that nothing but pure. hydrogen gas is coming through the tube.

Combustimn.- Combustion is hurning. When a match, or a piece of coal, burn there is combustion. Combution is usually the combination of some-

Fig. 129. Sulphur burned in oxygen. Fastenaspiraliareto a corb as in the picfame. If at the rive whantand put 1 into some powdered sal phar. Light the sulphurwith a math and remove the cork thit stoppers a bell-jar of oxygen and pat tha. corkworith the upirat wire in its place. Thes sulphïrwill blaze milliantly till it is all huned away. (Try it.) thing with oxygen. When a match burns, the sulphur on its head combinss with the axygen of the air, and it makes a stiting gus.

When coal burns the carbon of the coal combines with the oxygen of the air and makes carbonic acid gas. The combustion (burning) is rapid in these cases. When iron susts some of the iron combines (slowly) with the oxygen of the air and makes the oxyd of iron (iron-rust). When we breathe air into our lungs there is a slow combustion there. Part of our body rusts, as it were; the slow burning of our fat and food keeps the temperature of our body at about 083 Fahrenheit even when the air round $m s$ is at zero. The colder the air the more food we must fat to keep warm. That is the reason why the Eskimo eat fat and blubber.

Combustion in Oxygen.-Light a match and let it burn in the air and blow it out. While the end of the match is still glowing red put it into a jar of oxycen gas. The match will instantly burst into flame. (Try ii.) Blow out the match and try it again and again.

Fig :29. Hydhogen burning in air. The bottle contains hydrogen eti The $h+1 t$ hand tube is stopped up. The righthand tube leadh up insiduan empty glass jar. ,Hydrugen gas will strean up this tube. Light it with a match and it will burn. It will combme with the oxygen of the air. Hydrogen and Oxygem combincd form water. Notice the drops of water that condense on the inside of the glass. The teacher should try this experiment, uning great care.

Hydrogen is the lightest of all gases and is exactly suitable for the filling of balloons. It takes fourteen cubic feet of hydrogen to weigh as much as one cubic foot of air, so that a balloon filled with hydrogen (a.little toy balloon for instance) will float in the air.

Fig. 130. A balloon. Hydrogen is expensive and most balloons are filled with common coal gas (illuminating gas).

Chemical Elements.-When a chemist sees a substance new to him, a mineral, for instance, the first thing he tries to find out is whether the substance is a combination of substances that he knows already. For example, he finds that salt is made out of chlorine (a gas) and sodium (a very light metal). Next he tries to separate chlorine into any other two substances. He cannot do it; or, at any rate no chemists have succeeded in doing it, so far. Neither have they separated sodium into any simpler things. Substances that cannot be separated into any simpler substances are called clements. Here is a list of the most familiar elements.

Metals.

Aluminum	Sodium
Calcium	Quicksilver (a liquid
Copper	metal)
Gold	*ickel
Iron	Silver
Lead	Tin
Potassium	Zinc.

Non-Metals.

\author{

* Arsenic
 Carbon
 Chlorine (a gas)
 Hydrogen (a gas)
}
* Iodine
Nitrogen (a gas)
Oxygen (a gas)
* Phosphorus
Sulphur.

There are twenty-two elements named in this list. There are about seventy elements in all, but many of them are very rare. Ninety-nine hundredths of the substances on the Earth are made up of the eighteen elements in this list whose names are not marked *.

Every single thing on Earth that you can name is made up of one of these elements, or of a combination of two, three or four of them. And all that we know about the Sun, Planets, Stars and nebulæ leads us to think that they, too, are made up of the same elements.

Chemical Compounds.-Some of the substances that we see and handle on the Earth are elements
(gold, silver, iron, etc.). hut most of them are compounds--made up of two or more elements (sall, clay, steel, wend, leather, etc., are compound substances).
(lo, is silicon, aluminum, oxygen and hydrogen.

Salt is chlorine and sodium.
Steel is iron and carbon and phosphorus and sulphur and nickel.

Hood is chiefly carbon, oxysen, hydrogen and nitrogen.
L.ither is chiefly carbon, oyygen, bydrogen and nitrogen (combined in difteremt proportions trom wood).

Diamond is pure carbon.
Black-lead, in a pencil, is very nearly pure carbon.

Sugar is carbon, hydrugen and oxygen.
Muman hair is carbon, hydrogen, oxygen, nitrogen and sulphus,

Indigo is carbon, hydrogen, nitroge gandoxygen. . Wurtz is silicon and oxygen.
Granite is silicon, oxygen, aluminum, potassium or sudium.

Quinine is carbon, hydrogen, nitrogen, oxygen and sulphur.

Air is oxygen and nitrogen (mixed).
Water is oxygen and hydrogen (combincd).
Muman flesh-fut is carbon, hydrogen, oxygen; lean is carbon, hydrogen, oxygen, nitrogen, sulphat:

Milk is water (oxygen and hydrogen) containing

 fat (carbon, bydrogen, oxysen, nitrogen, sulphun).Chomical Symbel.-- Inslead of writing the word oxygen out in fult themists we the symbol O to suand for it, and in a similar wav they use other letters to stand for the other elements. Thene wmbok always stund for fixed zeetghts of the clements. O alwavi stands tor 16 part. by wejght, ot onyen. H always stand for one pat, be weright, of lydroget. Na atand, for 27 parts it :odium. ('i tor 35 path of chlonnt, and to m.

Chemi :" writs the wand :ht water $\mathrm{H}_{2} \mathrm{O}$, which means that in wate there mes path, be weight, of oxygen to two parts, by weight, of hydregrn. Sodium vombines with chlorine to make common sait. Cheming write the sumbel to salt Nat'l, whish means that it ontain, 23 parts, by weight, of sodium and 35 parts of chlorine. Sulphuric ar id is $\mathrm{H}_{2} \mathrm{SO}_{6}$; nitric at at is $11 \mathrm{NO}_{3}$; hydrochosid asideti HCl ; acetio acid is $\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{O}_{2}$, caponic actd $\mathrm{H}_{2} \mathrm{CO}_{4} \mathrm{O}_{4}$.

Grem vitriol in $\mathrm{FeS} \mathrm{O}_{4}$: hue sitriol is CuSO_{4}; matrble is Ca CO_{8}; starch is $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}$: mne-sugat. is $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$; and so on.

This is a short way of writing; and it can be used for descsibing an experiment and fer folting beforehand what third thing is going to be prendurd when two thing are coinbined. For instance, the experiment on page 125 (to mathe bue vitiol) can (be descriloxd in this way:

$$
\begin{aligned}
& \mathrm{Cu}+\underset{\mathrm{Cu}_{2} \mathrm{SO}_{4}}{\mathrm{H}_{3}}=\underset{\mathrm{CuSO}_{4}}{+}+\mathrm{H}_{8} \\
& \text { (Copper) (Sulphuricacid) (bulphate of copper mblue vitriol) } \\
& \text { and bo on for other combinations. }
\end{aligned}
$$

BOOK V: GEOLOGY.

Gcology is the science of the rocks. It tells how rocks were made in the first place, how they have been raised above the level of the sea, then crumpled up by earthquakes and pressure to make mountains, how they have been worn away by water and ice. The past history of the Earth is written in the rocks, and Geology tells how to read the history right. How old is the Earth? How does it happen to have its present shape? How long have men lived on it? Such questions as these cannot be answered without studying the - rocks. Whe have to begin by studying the way in which water and ice make changes in the Earth's surface.

The Earth's Crust... The crust of the Earth is the rock and soil of the land and the rock and clay of the ocean floors. No one knows exactly what is below the crust. The decpest wells and cañons are about a mile in depth. The hot lava from volcanoes dóes not come from very great depths. The only parts of the Earth that we ever can see or touch are the rocks of the thin outer crust. Draw a circle eight inches in diameter, and let it stand for the Earth. The thin pencil line that bounds it
is wide enough to stand for the crust. Ninetynine hundredths of the Earth's crust is made up of a doze n of the chemical clements see page 133) as carbon, oxygen, hydrogen, nitrogen, silicon, aluminum, sulphur, iron, ete.

Runwing Water Models the Shapes of the Hills and Mountains of the Fiarth's C'rust.-If you look at a plowed field after a heavy rain you will see that it is all carved into small ravines and hills. The ground was soft and one rain was enough to do the work. The hard rocks of the mountains have heen carved in the same way, only it has taken thousands of years and hundreds of thousands of rains to do the work.

Fig. 131. This map of a river and its branches might be, map of the little rivulets of water in a plowed field after a rairy.

The softest rocks of a mountain are quickest worn away and the high peaks usually consist of the hardest rocks.

Flo. 132. A view in the " Bad Lands " of Dakota. The rain has carved all the slopes.

Ocean waves may wear away sea-cliffs several feet every year. There is a church in Kent, England, that was a mile from the shore in the time of King Henry VIII. (1509). In the year 1804 it fell into the sea. In three centuries the ocean had worked its way a mile inland.

 aron all aromd it by water rind widened by glaciesm.
 where we see mess , thing their chamel. The Niagrara rict has cut a deap gorge connecting Lake Erie with Lahe ()ntario. The river falls over

Fig. 134. A part of the gorge of the Niagara viver.
a precipice and wears away the rock over which it falls about three feet every year. It has already cut a deep gorge about seven miles long. To do this work has required at least 12,000 years and probably more time, We can say then that any changes in the rocks that occurred before the

Fig. 135. The Great Cafion of the Colorado River.-This cafon is about 300 miles long and its depth is always as much as half a mile, and often as much as a mile. The river used to run on the surface of the ground. It has cut hundreds of miles of the length of its gorge down into and through hard rocks a mile in thickness. Irnagine how long a time this work required.

Niagara river began to cut its gorge must have happened at least 10,000 years ago. It is in this way that time is measured in geology.

Rivers Carry Soil to the Sea.-The Mississippi river, for instance, carries enough solid material to the sea, every year, to make a hill 268 feet high and a mile square. Five thousand such hills would cover all the land drained by the Mississippi (its drainage-basin) one foot deep with soil. It will take the Mississippi five thousand years, then, to lower the level of its whole basin one foot. And, generally, we may say that all the continents have their levels lowered by rivers about one foot every five thousand years.

Frg. 436. A mountain brook. It wall move quite large stones, uspecially in the spring when the brook is iull.

Stones are Carried by Streams.-A stream whose current moves six inches in a second will
carry fine sand along with it; gravel is carried if the current moves a foot in a spond; stones as large . as a hen's egg if the current moves three feet in a second. (Boys who live in the conntry can prove. this for themselos.) Very rapid torrents move large boviders.

Strcams hort Out Diffornh Miars of Stomes.-A mountain torn wht will cerry quite large stones along with its current. When the stream leaves the hills and runs more slow it drops the lagest stones. It will carry gravel a long way, but by and by it drops the gravel too. As it runs more and more slowly, in a flat country, it may even drop the sand it is carrying. The diferen stones are sorted out, according to their weight, by the stream. If yun put some sond in a basin full of water you cannot pour all the sand out with the water untess you give the basin a swirl to make the water move faster. Then it will pick up the sand. (Try it.)

Fig. 137. A thood plain.
*HE DEPOSIT OF SEDIMENTS.
Flood-Plains.-When rivers are flooded by melting surrws or hearv rains, they overtlow their banks, and their waters, which carry sand and mud, spread out over the land on each side. In spreading out they run less swiftly, and drop some of the mud and sand and form a flood-plain. The mud that is dropped is called sediment-that is settlings.

Fra, Yis. The delta nt agiten.
Deltas.- At the month of a river thete are often several branche's spreading out like the Greek letter della (1). Every year much mud and sand is deposited by the river and if the current is strong they are carried out to sea and dropped on the sea bottom, where, in time, they are crmented into rock.

Sediments are Deposited in Levyers (Strata).If a river empties into a lake or winto the sea it brings great quantities of sand, gravel, etc., and these settle on the bottom of the lake as sedimentssettlings. They lie in layers one above another. The river runs faster in the time of spring floods
than in the dry summer and so layers of gravel will sometimes lie over layers of sand. This goes min for centuries and centuries, and by and by, all these layers are cemented together and make a rock that is called a sedimentary rock. It is sandstome if the layers are of sand; limestone if the layers are made of the shells of dead animals that live in the ocean. All sedimentary rocks are strati-fied-are in lavers: and all rocks that are stratified (in layers) were or iginally made from matcrials sorted wh by water.

Fxg. 139. A glacify in the A!px. From the noww-covered summits the glacier showly moves downward like a river of ice. It carries with it all the rocks that fall on its surface and it grinds and polishes the face of the rockr in its bed.

Glaciers.-Snow falls on the tops of mountains in the winter and if they are befy high it does not melt when the summer comes. Above the snow-* line (see Fig. 122) there is perpetual snow. This snow slides downwards on the steep slopes and becomes packed into ice (as a snow ball can be packed, by pressure, into ice) and the ice, like a river, slowly flows downward between walls of rocks towards the valley below. At the lower end of the glacier the ice melts and forms rivers that are usually torrents. Glaciers flow like rivers, only very slowly, a few feet every day. If you drive a row of stakes in a line across a glacier like this :

in a few months the stakes will look like this:

The four stakes on the rocks will not move, of course; the others move as the ice moves; the middle of the glacier moves fastest. (Why?)

Bowlders.-The glacier grinds against its rock walls: and carries pieces of rock down with it. Bowlders fall on it and are carried down on its sur"
face. Now-a-days we often find great bowlders in places where there used to be glaciers that do not exist any longer. We often can tell just where these bowlders came from because they must have come from ledges of the same kind of rock. This is one proof that glaciers used to exist in that place.

Fig. 140. Boulders on Cape Ann. Massachusetts. They were brought by an ancient glacier that has long since disappeared.

Glacier-Scratches.- The glacial river is heavy and presses hard against its bed and its walls. The stones in the ice are slowly rubbed along the stones of the walls and bed and glacial scratches are made. If you find a rock to-day with such scratches you may be sure they were made by an ancient glacier, although the glacier may have melted away centuries ago.

Fre. yt. Ghacier mahings on a rock in lowa. There ate no yhacers in lona now-atdays.

Aghacier corries a preal quantity of rock and dirt with it. At the lower end of the glacier much of this dirt remains when the glacier melts. Some of it is carried away by streams of course, but much remains. The glacier thus builds up at its lower end a peculiarly-shaped wall. . Wherever you find such walls, now-a-days, was the lower end of an ancient glacier.

The Glacial-Period in the United .States.-nA great part of the United States was once covered.
by' glaciers as Greenland now is. This was perw haps a hundred thousand years ago. Since then the climate has changed and the glaciers have melted. The ice sheet was, in parts, nearly a mile thick. It covered parts of Iowa, nearly all of Illinois and Ohio, all of New York and New Eng-

Frg. 142. A pecaliar shaped hill (a momotine built by a glacier near Ithaca, N. Y. There are no gheiers in Nen Xork now.
land, and all of Canada. (Trace this region out on the map of the U. S., Fig. 121.) Bowlders, glacial markings and moraines now to be seen prove the existence of this ancient ice-sheet. Think what a different country America then was. Its plants, animals and men were all driven southwards by this ice-sheet. Ifs climate was very different. Nearly every one athe ponds and lakes in Canada and the
northern United States has been formed by this glacial ice. The valleys of all the rivers were much changed too; though many of the rivers are older than the ice sheet. The ice sheet endured for thousands of years and had time to do much work. The great falls at Niagara were formed by it, probably.

Fig. 143. An Iceherg from the Greenland glaciers. Seveneighths of its mass are below sea-level.

Icebergs.-When a glacier ends in the sear as many glaciers in Alaska and Greenland do, huge blocks of ice break off and float away. These icebergs are made of fresh water (why?) and they float so that only about one-eighth part shows.

Pack-Icc.-The salt water in the Arctic regions freezes, too, and makes fields of pack ice so thick that vessels can not penetrate it. . wis often so
jammed together by winds and currents that its surface is too rough for men to travel on. This is one of the principal reasons why it is so difficult to reach the north pole.

Soil is Rock that Mas becn Broken Up.-Take up some soil in your hands and you will find that while much of it is soft, it contains little crystals of sand, etc. These crystals are pieces of rock that has decayed and crumbled to pieces. Rub a pane of glass with these crystals and you will find scratches on it.

*TEG. 144. A picture to show the ooil and what is underneath
 that agen, solsd rock. But thes lat has cracis in it. Water enters these crachs and bursts them apart when it freczes. Rocks are all the while deorying ard making soil.

If you go deep down below the soil, anywhere on, the Earth, you will find solid rock-below the oceans as well as below the continents.

In the gorges and cañons of rivers, in quarries, tunnels, and railway cuttings you can see the bedrock, as it is called.

Fig. 145. A mass of stratified rock. The different layers (xtrata) are of different kinds. This rock was formed under water.

Diffrom: Linds of Rock's.-Granite, lava, sandstone, limestone, marble, slate and coal are rocks. (Try toget a piece of each kind.) Granite rocks have been formed deep down in the interior of fiey Earth, where it is very hot, and where the pressure is very great. Laza is melted rock that has flowed out from a volcano. Sandstones are grains of sand that have been cemented tugether, under water. They are in layers-in strata. Most limestones have also been cemented together, in layers, under water, from the shells of small sea animals.

Nine-tenths of all the surface of the land is covered with stratified rocks. That proves that the continents were formed under the sea and then slowly lifted up.

Stratified rocks lie under all the oceans.

Fig. 146. A rock made of shells cemented together under water.
Granits is composed of three different minetals, quartz, feldspaf and mica. You can see in a piece of freshly broken granite little crystals of hard quartz, and with your knife you can cleave施佂 thin layers of shining mica (isinglass it is sometimes called). Feldspar is thenge, in small flesh-colored crystalline slabs. (Trynto find these in a piece of granite.) All the granites were formed deep down in the Earth. The granites that we ser have been uncovered by water that has worn away the rocks that once laid above them.
Wimestone is made of granules of carbonate of lime cemented together. If you put a drop of sulphuric acid on limestone carbertic acid gas is set free in little bubbles.

Sandstones are grains of sand cemented together. Red sandstones are cemented by a compound of iron, and the air does not affect them. For that reason they make excellent building stones.

Fig 147. Photograph of twe piece*s of granite.
 i_{11} schorel.
 gioins and deposited under water we havish odyduthe mean bed, far from land, is, in great part, made of a reddinh , lay.

Crystalline Rocks and (rystals.-If you break a piece of marble you will see that the rock is made of a multitude of little shining crystals. Sugar,too, is made of crystals.

Precious Stoncs.-Diamonds (white), rubies (red), emeralds (green), sapphires (blue), topazes (yellow), amethysts (violet)-are all crystals.

Fici, 148. Obelidian -a lava rock like black glasm Pumice is another kind of lava.

Fig. r49. A piece of sandstone rook.

II... 5 5. Dnowflakes crystallize into'six-sided forms.

Diwolve a quantity of salt in water; and then sot the water in a meral pian on a stove so that the water evaporates rather
 (T'y it.) I'scty one of these criststs, large or small, is a cube. Salf crystals are all of one form, just as clephants are all of one form, whether they are large or small.

Dissolve a quantity of sugar, or alum, in hoilitig water and set it away to cool. Ilang some threads of string in the solution, and when it cools you will find the string cowered with shining crystals. (Try it.) Snow is crystupazel water.

Elcvation cud Depressionjy the Land.-All stratified rocks, we know, wefermed under the ocean. How is it thetaty fik find them making the land? Millions of years' ago they were formed;

Fig. 15I. A crystal of quartz. Quartz crystals usually have a shape like this.
slowly-a layer at a time. It required millions of years to make them. During this long period the crust of the Earth has suffered many changes. Some parts of it have been lifted up; some parts depressed. On mountains, thousands of feet above the ocean, we still find shells of sea-animals bedded in the rock. When the shells were deposited, the tops of those mountains were under water. In Lake Baikal, which is now 1,600 feet above the sea, there are lining seals of the same species as those of the Arctic Ocean. Their ancestors came Were before the glacial epoch, when Siberia was under water. The interior of the country was then lifted up leaving this lake, and the seals have continued there to this day. They are living evidence af the rise of this country from the ocean. Even now the coasts of Sweden are rising and you find sea beaches there 800 feet above the present sea level. Other coafisy are sinking.

There is a temple of $\$$ giter built by the Romans near the ceaghore about two thousuida years ago. Three of its columns are
still standing and in them you can still see soa shells which bave bored into the marble. When these borings were made the flom of the temple must have been at least twenty feet under water. It was above water when the Romans built it; below water when the sea shells were boring; and it is alnost above water now. So that here in a certain proof that the limi where the temple stands has been depresed twenty teet and raised again in the last two thousand years. There are many other proots of the same kind and they all show that in the millions of years during which the Earth has lasted the crust has been elevated and depressed many times, very ditherently at different places, of course.

All the granites of the Rocky Mountains were formed deep down in the very hot interior of the Earth and have been raised by the crumpling of the crust. All the sandstones and limestones of the country were formed under water and have been raised to their present levels by crumplings of the Earth's crust. Sometime the lifting was gende and gradual; sometimes they were 1 aised by violent earthquakes.

Fkc. 152. Stratified roks tulted. Originally the layers were horizontal. During some crumpling of the' Earth's crust they were turned on edge.

The Stratificd Rucks are About Five Miles: Thich.-Few rock walls are more than a mile high. How can we know, then, that the stratified rocks of the Earth's crust are at least five miles thick? In the crumpling of the crust the stratified rocks are sometimes turned on edge, as in Fig. 152. We can then actually measure their thickness.

Fis. 153 . A serins of layers of socks of different kinds that wes. ocigisally horizontal and that have bech tilted up on edge,

Corumpling of the Earth's Crust:

Fig. 154. A picture to show how mountains are sometimes formed by crumplings of the Earth's crust, and how rivers How in the valleys. The hlack stratum is coal. If would never have Ween found if the layers of rock had not been crumpled.

Mountains are usually formed by the crumpling of the crust of the Earth as it cools. At first the ridge is a huge bulge on the Earth's surface. Afterwards it is sculptued into shape by water. 'The Appalachian Mountains are 1 ,ooo miles long, 100 miles wide and 3,000 feet high. The Rocky Mountains and the Andes together we ro,ooo miles long, 500 to 1,000 miles wide and 10,000 to 20,000 feet high Water has rarved them into shape.

All Nowa Scotia and New Enghand and the very places where the cities of New York; Philadelphia, Baltimore, Washington and Richmond now stand were once covered with mountains as high as the Alps. Water has norn them away.

The Pressure of the Rocks within the Earth.-Imagine the pressure on the bottom bricks of a brick wall roo feet high. If the wall were r,ooo feet high the bottom bricks would be ground to powder. The rocks fifty miles deep in the Earth would be ground to powder, too, if each piece of lock were not packed on every side-from helow as well as from above. If a crack opens near such a piece. the rock will foze through the crack just an the would. The motion will produce great heat, just as drawing a rough tile over iron producestheat.

The least weakness in the Earth's crust, anywhere, produces crumpling. . It may build noun-: tains.

Take 3 pice of putty or dough and push it sidewise from both sidés. The center will rise into the shape of a muntain. . (Tryit.)

The amount of rock removed by water is enormous, as Fig. 151 shows. Probably five miles of rock has been washed off the top of the Appalachian Mountains and more than a mile from above the present Rocky Mountains. The shapes of the monntains as we sec them now are entirely due to water.

Fouthe und Flora.-The animals that inhabit any country or region are called its finam; the trees and plants, its flora. Some animals (the alligaton for instance) are only found in certain regions.

 momenty you see this picture youknow that it wan taik n in Aurtralia antl nowheres else.

Some plants live only in certain places. There were no mammoths camels in Anderiga when Columbus landed (149^{2}), but there used to be
thousands of them. Their skeletons are still found by scores.

Fossils.-The stratified rocks were formed in seas, lakes, and in the deltas of rivers. Shells, bones, skeletons, leaves, plants, logs and the like were buried in these layers millions of yars ago and some of them have been peserved. They have been turned into stone. We know something about the fauna and flora of past times by the fossils that have been found. We know that the Kangaroo, to-day, helongs to Australia. In the same way we can associate certain fossils with certain layers of rock-with certain ages. If you find a certain kind of fossil fish in Iceland and another of the same kind in Norway you know that the two rocks containing the fish are of about the same age, because that fish lived at one period of the Earth's history and at no other. The animals and plants that first apeared on the Earth are buried in the deepest layers.

The l'nstralified Rocks. - Granites and lavas that are not stratitied form the greater part of all the mass of the globe. Thes lie deep down, and we only see them when the rocks atove them have been worn away by water or when they have (like lavas) been pushed up hy pressure trom below.

Volcanoes.-Volcanoes are mountams built up by lava flowing out from the bot interior of the Earth. The lava is forced upwards pressures in the Earth's interior. Lava is melted rock. Enormons
quantities of it flow from some volcanoes. The whole of the Hawaiian Islands have been built from lava flows. In the northwestern parts of the United States (Washington, Idaho) there are lava fields that cover 200,000 square miles, and they are sometimes 3,000 to 4,000 feet thick. Arizona has a lava field covering 25,000 square miles. These immense sheets of lava were not sent out all at one time, but the lava flows were spread over millions of years. Mt. Etna is 11,000 feet high and 90 miles in circumference and is all solid lava; the Hawaiian volcanoes are much larger. There are hundreds of active volcanoes now; and thousands of extinct volcanoes.

The surface of the Moon (see Figs. 22 and 26) is covered , with extinct volcanoes.

Fig. i56. Lava (colored black in the picture) flows from a hot reservoir deep down in the Earth to the surface and flows out. It builds up first a hill and then a mountain.

Vesuvius.-One of the most famous active volcanoes is Vesuvius, near Naples, in Italy. In the
the year A. D. 79 a terrific eruption took place which buried the cities of Herculaneum and Pompeii ${ }^{1}$ under heaps of volcanic mud and ashes.

Fig. 157. A portion of Pompeti with the heaps of asleen remored. Many of the houses remain jus an they were twenty centuries ago. Mt. Vesuvins shows in the distance.

Imagine Now lork to be buried under heaps of ashes and to remain buricd for twentycenturics! The people who would unw cover it w the year A. D. 4000 would know exactly how we lived, how our houses were built, what clothes we wore, how we worked and how we amused ourselves. The inhabhitants of Pompeia rushed from their houses leaving everythinss behind them. . A few who returned to save their money or jowels perished. Everym thing remained untouched. When the dity was uncovered after all those centurjes the very bread wa found on the counter in the bakes"s shop! A notice wesfound Cate Cane'm (Beware of the Dog!) to warn passers-by of a fierce wath-clog.

1 Pronouncis pronmpi'yë.

Volcanoes se mil wat gas. flame, steam, mud, ashes, hot stoness and floods of melted lava, or sometimes of hot mud

The steam causes violent explosions and sometimes tears the mountains to pieces as at Krakatoa, near Java, in 1883 , and in Martinique in 1901.

The volcano of Cotopasi is known to have thrown a rock nine feet square and thirty feet long nine miles away. Instances of the sort give some idea of the immense energy of the explosions.

Earthquakes. - If the underground rochs are moved at dll a shock is wom in curey direction. Ten million tons of rock moning a hundredth of an inch will make a heary shool, and if the movement is not toe dep underground we shall feel the shock at the surtare. The earthquake at Charleston, in 18k6, threw down hundreds of homses, opened great cracks in the ground, made new ponds and lakes, and was felt all the way from Wisconsm to Cuba. At the Lisbon earthquake ('755) forty thousand perions perished -many of them by great waves that rolled in from the sea when the level of the ucean-floor was changed. There are earthquakes during every volcanic eruption. It is the earthquakes of millions of years that have crumpled the crust of the Earth.

The Age of the Farth... No one can tell the age of the Eatrh exactly, but we can form some idea of it. The sedimentary rochs were all formed by soil washed out to sea. The sedimentary rocks are
certainly 6,000 feet thick (probably they are more; see page 158). Rivers bring soil from the land at the rate of about one foot deep of soil every 5,000 years (see page ifi) 6,000 times $5,000=30,000,000$ years. If the rivers of old time worked no faster than the rivers of our time then the Earth must be at liast 30.000 .000 years old.

Suppose that one of your steps-two feet longstood for a hundred years and that you start out for a walk. Three steps from your house put a stake in the ground to stand for the landing of the Pilgrims, three hundred suars ago nearly (1020): four steps from your house put another stake to stand for the landing of Columbus (1492); at right steps put a stake to stand tor the conquest of England by William the Conqueror (ro66) ; at nineteen steps, a stake to stand for the date of the birth of Christ; at sixte steps, another to stand for the building of the Pyramids in Egypt (aboul 4,000 13.C..). Nearly all the history we know is mpresented by sixty of your steps. It would take 15,000 such steps (about 6 miles) to mark off a million years of the Earth's history. You would have to walk at least 180 miles to represent the age of the Earth.

If the time during whith the Earth has endured is represented hy a 80 miles then the whole known history of mankind is stpresented by wot more than a couple of hundred fect.

Geological Ages.-We can tell the age of some rocks by noticing what fossils they contain. First of
all, there are many rocks (granites, lavas, etc.) that contain no fossils at all. We can tell nothing about them. They are called rocks of the Archcan age.

Fig. 158. The succession of the locks of the Earth's crust. The oldest rocks are at the bottom, the youngest at the top. They wete deposited in that order. The Arckean rocks have no fossils; the Age of Invertebrates has few animals with backbones; in the Age of Repriles animals with backbones, especially reptilles, are numerous; in the Age of Mammals there are many animals that give suck to their young.
Lying over them are layers of rocks that contain the fossil remains of plants, seaweeds, shellfish, etc.

Fig. 159. Some of the fossils of the age of invertebrates -of the age when there were fewkanimals with backbones.

This is the Age of Invertebrates-of animals without backbones. There were plenty of fish, though, in this Age. It is also called the Palcozoic Agethe age of ancient life, the name means.

Fig. ifo. A fish of the Devonian period. Its body is covered with scales like that of a reptile-ot a lizard, ton instanse.

Lying over these rocks, again, are others, that are not so old; they lie uppermost; they were deposited later. The fossils in these rocks are mostly reptiles-lizards, etc., besides fish, plants, trees.

This is called the Agc of Rcptilcs; or the Mcsozoic Age-the middle age of life. And, lying over these rocks, again, are others younger still, that contain the fossils of animats that give suck to their young - mammals (such as foxes, dogs, wolves, lions, horses, cows, elephants, and man). This is called the Age of Mammals - the age in which animals that give suck to their young are common. And these great Ages are divided into shorter periods. The Carbonifcrous period is that in which the coal was formed: the Clacial perict is that when the Earth's surtace was largely covered with glaciers, and there are many others.

Life in the Ase of Intertebrates.-What life there may have been before this Age we do not know. The earlier rocks have no fossils. The earliest fossils belong to the age of animals without a backbone and to the seaweeds of those times. There were many corals; an incredible number of shell fish, sonne of them fiftern feet long ; fishes of many kinds, some of them almost like reptiles, and so forth.

The Coal-Pcriud.-.-The coal beds of the world are immense swamps of ancient times in which the trees have rotted and died. During long ages the trees have been gradually turned into coal.

A thick forest makes about a ton of dead leaves, dead branches and trunks on every acre every year. If you spread this evenly over an acre it makes a layer less than a thousandth of an inch thick. "In
some coal tields the solid coal is over a hundred fert thick, and it must have taken something like a million years ($1,200 \times 1,000=1,200,000$) for these beds to be formed.

Ftr. 161 A landrape in the cond period. N'stre the theron trees, wry different from ours. Fossil lieds of this hum atw found in cosl. In tat, coal is nothing but the iowif remains of surh cress. some of the taces were at last jo tect high and 4 feet in diancter.

Peal-Brgs. - Now-a-days we find in certain countries great mashes or logs of a thick black mud called peot. lreland has many such bogsone of them is lifty miles long for instance. In the United States, there are many also. The peat is mostly made up of decayed trees and plants (car-
bon, nitrogen, etc.). Plants and trees drop their leaves every year and finally die themselves, and fall. In wet places peat is formed, often rapidly. Coins left by Roman soldiers 2,000 years ago have been found covered by ten feet of peat bog, so that the peat has increased about a foot every two centuries, in that particular place.

There are many single layers where the coal is 50 feet thick and the thickness of the rocks that contain coal is more than two miles. The ancient swamps were of inmmense extent. In Pennsylvania, Ohio, Virginia, Tennessee, Genrgia and Alabama there are more than 60,000 square miles of coal lands, and in North America alone about 200,000 square miles. These were once swamps.

The climate in those times was very different ent from now ; it was warm and moist everywhere, even in the arctic regions (where coal is often found and where there must have been forests, of course). There were many corals, land and fresh-water shells, and very many insects, such as dragonflies, spiders, bectles. These insects had organs by which they could make a noise, a note, to call their fellows.

Life in the Age of Meptilcs.-Some of the fish of the Age of Invertebrates gradually turned into reptiles-land and sea animals with a backbonesomewhat as a tadpole changes into a frog. That. is, the descendants of some of the early fishes became reptiles; the descendants of other fish rem

Fig. fi32. Flora and fauna of the Jurassic period. Notice the lizard-like birds with teeth.
mained fish. They breathed through gills and not with lungs. The reptiles lived sometimes on land, sometimes in the sea. After millions of years some of the reptiles grew immensely large as we know by their skeletons found to-dar.

Fro. if.3. The skeleton of a Brontonaurus. Surue of these huge lizard-like animals were 50 feet long and weighed womething like 20 ions. They walked; they did not crawl ; and sometimes they stood upright.

Life Since the Age of Coal.-The plants, trees, fish and animals of the Age of Cowt and the ages

LIFE SINCF THE AGE OF COAL.

Fig. 164 A ayingreptile. Some ot these reptikshat a spreat of wingix as math ats thenty fect.
before 10 were $\begin{aligned} & \text { ery } \\ & \text { different inded from those chat }\end{aligned}$ we know. But they were the ancestors of our plants and animals. Some tishes gadually lont their anowed scales and their descendants became our fish. The flving reptiles were the ancestors of

Fis. ros. A landscape of the Chad peiood. The tuclo ade not unlike our redwoad and palun...
oir birds. Our horses are the descendants of anj.mals of the same sort that lived in these ancient times. Our oak trees, poplars, willows and so forth, were unknown till the Chalk period, but they are the children of old forms of trees, much changed in the course of millions of years. Great lizard-like animals of past times were the ancestors of our crocodiles and alligators.

Ancestors of the Horse.-The fossil remains of horses that lived millions of years ago have been discovered, and their bones are now in our museums. There was the Eohippus, the first horse, the ancestor of all horses. He was no bigger than a fox, and he had five toes on his front feet instead of one toe (a hoof) as our horses have. This horse lived about $4,000,000$ years ago. Next came the Orohippus (mountain horse), which was about the same size, and which had four toes on his front feet. Next came the Mesohippus, a horse about the size of a sheep, having three toes on his front feet. He lived about $2,000,000$ years ago. Then came the Protohippus, about the size of a donkey, having three toes, only one of which touched the ground. The others were too high to touch it.
 hippus, a small pony, with hoofs; and finally the horse.

Four million years ago all the horses had five toes and were no larger than foxes. They found good food and grew larger because they found it.

The larger and stronger the horse the more food he could find, the further he could travel to find it. If he lived in stony places, as Orohippus did, the horse with the fewest and hardest toes was the most fitted to live in those places. The strongest and biggest horses had the strongest and biggest colts, and they, in their turn had stronger and bigger colts. Finally, in three million years or so, the children of the litte Folhiptes had grown to be real horses. The fillest survized and had colts; the zurntivt perished in the struggle for existence.

Natural Selestion-The Struggle fur Existence. Every ammal gets its tood and saves its life from enemies by a struggle for existence. Thite fittest survive; the weaker dic. It is the same nith plants and trees; with fish and birds. Why, do you supposemare most wild animals, deer for instance, of th . he color on both sides? And why is that color the color of the regions in which the deer live: Because a dun-colored deer is not so easily seen in a desert as a black one. More of the black ones have been killed by lions and tigers; more of the dun-colored have survised. The young deer grow like their parents in color. Deer are the same color on both sides because the deer of different colors are quickest seen and most often killed. Fewer of them live to have young. Lions are the same color on both sides because the lions that were of different colors were more easily seen; they got less food; fewer of them liyed to have yougg, Wild
bulls are nearly always of the same color on both sides; farm bulls are often of several colors. It nakes no difference in their life on a farm what color they are. But it makes a difference to the wild bulls. Bears that live in forests are brown; polar bears are white to match the snow.

Learn these lines by heart; they were written as a joke, but they are true if they are rightly understood.

The fastest lions caught the most animals,
And the tastest animals got away from the most lions:
So all the slow animals were eaten,
And all the slow lions starved to death:
Heredity: Adaptation.-.-. Young plants or animals are much like their parents. They inher it their shape and size from their ancestors. A young tree is aiways an oak if it grew from an acorn; it never turns out to be a willow or a chestnut. But all the young trees are not equally vigorous. Sobme of them can stand several dry summers in suecession, and some cannot. 'Trees that can best adapt themselves fo their surroundings live the most vigorous lives and have the healthiest acorns. If the climate changes, the weak trees, die and the others well adapt themselves to new circumblances. If the climate changes very slowly indeed, the oak tree, in thousands of years may change very much. In California, where there is no winter, the oak trees are evergreen ${ }_{i}$ they do not shed their leaves at all.

Animals change in the samre way. Once there were no birds, but there were flying reptiles:" Then came a kind of reptile with feathers, and afterwards
a bird. Some of the ancient fishes were half reptiles. Some of the great lizards were half whales; others were partly birds, partly mammals.

Every living thing nust adapt itself to its surroundings or die. When the surroundings change many animals and plants die, hut many others change and become very different from their former selves.

Some kinds oi animals and plants (sea-shells and seaweeds for example) have changed very little in millions of gars. Other kinds, trees, borses, men, have changed very romeh.

Rewn Ceollagital leriods. . Any the not more than tour or fine millions ai years ago is recent in Geology. The dimes that are most interesting to us are the last two or three hunderd thonsand years Man appears on the Earth about 200,000 or 300,004 ytars ago.

If the entre age of the Eath is masured by two handred mile (one of sour ntep to a ceatury the thm that men have bed on the liarth will he meaturd by two hundred of yone

'lhwe have heen great changes of climate on the Eath in the last million years. Before the Glacial Period Greenland was covered with a rich vegetation like that of our temperate zones. The fossils prove it. The beds of coal found in the Arctic regions prove that the arctic climate was then warm and moist. Fossil trees that need a warm climate (willows and maples) are now found in Greenland
under great cliffs of ice. There were formerly rhinoceroses, elephants, lions, tigers and hyenas (animals that live in warm countries) in England. Their bones are still found in caves together with stone arrow-heads made by men-our ancestors.

The (xlacial Pcriod.--(See page 147.) For some reason, not well understood, the climate of North America grew colder. Glaciers a mile thick covered Canada and part of the United States as far south as Ohio. At this time our continent was united with Asia near Alaska and perhaps men came to America along that road. The animals of the country were slowly driven southwards by the ice in search of food and warmth. Many trees and plants were killed by the cold and other more hardy plants took their places. Fossils of Arctic plants

Fig. 166. Arctic poppies growing on edge of a snow-bank.
are now found as far south as Pennsylvania. Fossil plants of the temperate zone are found in Old Mexico. The climate again changed, we do not know why, and the glaciers melted after thousands of years and left the country very much as we see it to-day. You can understand the changes that have taken place on our continent as the climate changed, if you will think of what now takes place on a high mountain in the tropics.

Botanical Regions.-A high mountain in Mexico has perpetual snow on its summit. No plants can live there. Then comes a belt of rocks where there are no twees. Below this is a belt where pine trees grow, and then comes a belt of hard-wood trees. Lowest of all is a belt with palm-trees and all kinds of tropical plants. The chief reason for this is, of course, the temperature. Palms can only grow in hot regions. Pine trees can only. grow in cold regions. Few plants glow in the snow. If you divide the Earth's surface into zones there are few plants and no trees in the Arotic zone, many pines and hard-wood trees in'the Temperature zones; a profusion of palms in the tropics.

Plants are fixed to the soil and cannot travel from place to place as animals do. Plants, then, must stay where the temperature is favorable to them. They cannot live elsewhere. Wild animals like the buffalo used to range over the Western* United States from Canada to Texas. But even then they could not live where they found no good

Fig. 167. Zones of Vegetation.
grasses. Animals live in regions, too. Each country has its peculiar fauna and flora. Monkeys, armadilloes, llamas now belong to South America; lions, tigers, zebras, hippopotami, etc., to Africa. They live there because the climate is favorable; they find grood food. When the climate of England was warm and favorable there were hippopotami in English rivers ; lions, tigers and hyenas in English forests. Elephants and mastodons used to live in North America.

Fug: 168. The pyramids of Egypt and the sphinx--buile six thousand years ago. The great pyramid was 48 I feet high.

Prehistoric Man.-There were men in those days too-savages, we should call them-but they.
are our ancestors. At first they did not know how to make a fire and had weapons of bone or chipped flint (the Stone Age). They were clothed in skins. By and by they learned to weave cloth and to make weapons and tools out of copper (the Bronze Age) and afterwards of iron (the Iron Age). At first they tamed no animal but the dog. By and by they tamed cows, sheep, goats, horses. At first they lived in caves, then they built huts and afterwards houses.

Ten thousand years ago, in Egypt men were cultivating wheat, working in metals, living under a regular government. Sis thousand years ago the Egyptian pyramids were built; men had learned to write, to make statues, to live in an orderly way, in peace and comfort.

BOOK VI: ZOÖLOGY.

Zoollogy is the study of animals; Botany is the study of plants (see Brok VII). Biology is the study of all living beings, plants and animals alike.

The Sudy of Zocilugy.--There are millions upon millions of living things on the Eath-fish in the sea, worms in the ground, birds and insects in the air, animals of all sorts on the land. One of the first things to do is to separate all these animals into classes, so as to get those that are alike into one class, and then to study each class thoronghly. For instance, the cats form a class-a large family, as it were. The panthers form another class, the leopards another, the tigers another. After each of these classes has been studied by itself, we must see if there is any likeness between the different classes; how the cats, the leopards and the tigers resemble each other and how they differ.

Kingrdom, (lass, Order, Family, Grnus, Species. -In this way animals are separated into groups and companies. All the animals of one group are like those of the same group and differ, in some way, from the animals in all other groups. Take an Angora cat, for instance. It belongs to

The Kingdom of animals,

The Branch of vertebrates (animals with backbones).

The Class of mammals (animals that suckle their young),

The Order of Carnivora (meat-eaters),
The Famuly of Felidæ (the cats, lions, tigers, lynxes, etc., all belong to this family),

The Grnas Felis (wildcats, cats, but not lynxes, belong to this gemus),

The Spccics Domestic Cats (there are several kinds in this species),

The laricty Angora (there is only one kind in this variety; but there are other varieties).

A schoolboy-let wa call bis fohn Rohionon-w swotmes addresses a letter to himselt this way M, John Ruhmani, 227 Michigan Avenue, Chicago, Cook County, Illincis. Unied States, North Americs. Western Henisphere, World. The posiman cat find him in time. The dedress tully describes him. In the same way the angora "at is tully descriled be the variety. species, genus, etc., and cannot be completely descrited in fewer words. There are many boys of the genus nchoolboy, and a number of the species Rohinson, but not so many of the zuriety John Robinson.

Differences between Plants and Animuls.-It is easy to distinguish between the plants and the higher animals. A horse is an animal; an oaktree is a plant. Most animals can move from place to place, but some animals-corals and sponges, for instance - are fixed to one place; a few plants can move about. Animals can generally see, hear, touch, smell, taste; they digest their
food; their blood circulates. Anmals usalay eat other animals (as the lion does) or they eat plants (as the cow does). Plants usually get their food from the air and from the soil (though there are plants that catch flies and cat them). Animalst usually breathe in oxygen and breathe ont carm bonic acid gas. Plants usually breathe in carbonic acid gas and hreathe out oxygen.

Sometimes it is very difficult to tell tire lowest kinds ot animais from plants. People at the seashore press sea-weeds into albums. Most seaweeds are plants; but nearly all such allums contain certain animats that look almost estatly like real sea-weed.

Fossil Animats.- Peside the millions of animals now living there are millions of fossil anmals (and plants). Wathy the living mimals are somewhat lik: there fossil ancestors; they lelong in the same family, but wot to the sume species or variety. The living amimals fit the present time and the circumstances in which they live. Their fossil ancestors fitted the very different circumstances of geologic ages long ago. The hmse to-day has one twe on each foot; the fossil horses hid several toes.

Fauna and Flora.- The animals that live in each country are called its fauna-its animals. The animals of the Arctic regions are the Arctic fauna; those of North America are the North American fauna; of the ocean are the ocean fauna and so forth. . Each region has a flora too-its plants..

The Eigit Branches of the Animal. Kingdom.

All living and fossil animals belong to one of the eight branches of the animal kingdont; and in each branch there are thousands of families, species and varieties. Zoölogy studies all these animals, all these species. In this book we shall only describe a few specimens of each branch, and we shall begin with the simplest of all animals and go on to the highest of all-that is, man.

A spade is a machine; a steam engine is a machine. The steam engine is a higher kind of
machine than a spade not because it is more powerful, but because it is more complicated and because it can do very many kinds of work while the spade can only do one kind. The ox is stronger than a man; but a man is higher because he can do many kinds of work while the ov is fitted to do only a few kinds.

Ced/s.-In the first place it is necessary to say that the bodies of all animals are made up of colls, so called. The body of a man, for instance, is made up of thousands and thousands of cells each one of them being a bit of protoplasm (something tike the white of an egg) and all of them being very small, about $\beta \frac{1}{6} \boldsymbol{t}_{\sigma}$ of an inch. When you wound your hand it heals by new cells forming on the wounded places and taking the place owheold ones.

Protoplasm is the glairy mass that makes up each one of the cells of every animal's body. It is a chemicil simpound of carbon, hydrogen, oxygen and nitrogen. These four things are dead elements and no one of them, by itself, can be alive. When they ate combined into protoplasm the combination can be alive. When the body dies it separates into its clements again.

Onc-celled Animals-the Amaba.- The very simplest of all animals are made up of one and only one cell. They are very small. Amarba lives in pools or ditches of water in the ooze or mud at the bottom. If you put some of this mud on a plate of
glass under a macroscope you will see a very small moving mass that tooks like transparent jelly. It is alive, It moves by swelling out on one side and then flowing towarde that side somewhat as a drop of honey fows. It feeds on very small plant, (diatoms) hy flowing over and around themswallowing them, as it were. If gou bouch it, its body shrinks, which proves that it can fenl. It an move. It digests its food, using some of it, rejecting the rest. It grows. It absorbs oxygen, and gives out carbonic acid gas, which is a kind of

Fis, rog. Amceba, magnified nanv times. At n is the central min hus of the anmal; w and w are water atucle $; f t$ is one of the food nuclei. The animal flows outward from the center in the direman of the nerows.

Scrape thr green growth off the outside of a flower-pot and cover the scrapings, with water. In two or three weeks many of these animals will be foutd in the scrapings. A microscope is needed to see them.
breathing. It often divides into two masses and each of these masses is alive; and then each of these, again, divides - so that a family is born.

The Amœba has no lungs, and yet breathes; no mouth and yet eats; no fixed shape and yet grows ; no nerves and yet feels; it is neither male nor female and yet it has a family.

If a common earth worm (a very much higher creature) is cut into two parts each part lives and becomes a perfect worm. Each half of Amorba is a complete animal. Bacteria are small plants, that grow, like Amoba, by dividing into two.

Fig. igo. Glohigerina (magnified iov times). These animals live in the upper layers of the ocean waters by millions. When they die their shells sink to the bottom and are there slowly cemented into limestone rock.

The Ooze or Mud of the Bottom of the Ocean.Floating on the surface of the ocean there are mil- .
lions of little creatures that have shells made of lime. Inside the shell is a mass of protoplasm (something like the white of egs). The shells are full of little holes and the matter inside them sticks out in spines. All sorts of sea-animals eat them, by thousands, for food. Those that are not eaten die at last and their shells sink slowly to the botom of the ocean and form the ooze or mud. By and by, in thousands of years, the mud beromes solid chalk. All the great chalk clifis of Enghod are formed of the shells of such little anmals in commless millions.

Fig. 17t. The right-hand picture shows a sponge with nany mouths all over its surface. The left-hand picture shosw: the same sponge sliced in two. The lage central cavity is the stomach.

> Many-cellcd Animuls-Sponges.-Sponges are animals made up of cells "urranged in layers. The
inside of a sponge has many pouches that serve as stomachs and a great many small openings which sesve as months. The water pours through them and the mouths seize their food (som, seis-animais). luside of the sponge there is a kind of skeleton made of glassy rods and spikes. Young sponges come trom eggs fommed inside the body of the parent, which is lised to the rock. The goung spooge floate about and, by and by, in its tum, becomes fixed. Some spouses also but, like lioners. and young sponges , we the buds, and are finally separated. Jou has to temember that even low ammads, hke aponge.o. rome forn tags. The lowest anmals of all divide inte parts and eath part hes. Jath-Fish.-Any one who has: been at the seashore has noticed jelly-ini, floating abeat on the

Fig. 172. A jelly-fish seen from the under side-bataial size. Some common jelly-tishes grow to be eight or ten inches in diumeter.
surface of the water. There are millions of them and they make the food of other sea animals.

They can move about by opening and closing the edge of their flat body as if it were a kind of a fin. Water and a kind of fluid circulate through their veins somewhat as red blood circulates in ours. They have eyes to see, and ears to hear, a stomach, and curious thread-like organs that sting any animal swimming near by. The sting paralyzes what it touches, and that is the way the jellyfish gets its food. The young of the jelly-fish shown in Fig. 172 are born from eggs.

Fig. 173. A colony of live coral animals above a rock tormed of the bodies of thousands of dead corals.

Corals are little animals that live in warm sea water near the surface. The skeletons of these little animals are made of carbonate of lime that they extract from the sea water. When they die the skeleton is left and forms a rock. Corals live together in colonies. A coral island is nothing but the skeletons of millions and millions of dead corals,
and it is usually surrounded by reefs of corals that are living. Branches of red coral are used for jewelry you know.

Fig. 174 An island tormed entirely of coral rock.
Tydra.-The hydra is a very small water animal found in fresh-water ponds. It has feclers that

Fig. 175. The left-hand picture shows a colony of hydroids growing on the shell of a hermit-crab. The right-hand picture shows a bit of the colony drawn larger. The hydra forms buds somewhat as plants do. The buds drop off and are small jelly. fish and fioat away. Some jelly-fishes come from budding; some" from eggs.
sting like nettles and paralyze other little animals that it uses for food. Jolly-fishes and coral animals have the same kind of feelers which they use in the same way If a Hydra is cut into slices crosswise, (all vice grows into a complete animat ; if it is cut into strips lengthwise each strip makes a complete animal.

Horms.-The best way :" understand what a morn is like and how he moves is to dig up a few earth-womes and to put them on china plates. In our of the plates jut some garle a soil and watch the wom ds er burrows into it. We think the worm is a vely bow anmal, but it has eyes to see, ears to hear, nerves to feel, a head and a kind of brain in it, a bewly made up of separate rings, muscles, a skin, a mont and stomath (or, rather, a gizzord in wheh the food is ground up) a kind of heart with whitw bood in it. It can move about on the sam. if if: fand a vertical wall by using rows of shat hathes that are arranged on each side of its indy. The carth-norm tarrows by swelling out iss head till it paries the dirt away on hoth sides and also by wallowing some of the: dint and passing it thromgh its bods. The thousands of earhworms in every field do much good by loosening the soil, thus allowing the air and rain to reach the roots of plants. They work the soil over by the finest kind of gardening, and the layer of blackish soil at the top of the ground (you can see it almost everytwhere) is their work. Their chief food is
halt-decayed leaves. They lay eggs from which the young are hatched; although if a worm be cut into two pieces each of the pieces will grow to be a complete worm. They ..re like the Amoba (page 188 , in this, and like the birds and crocodiles in laying eggs. If two worms due each cut in balf the tail ot one worm can be made to grow on to the head of the other so as in make a new animal.

Fig. 176. A starfish. This paticular kind is Mood-red in color and has a skin like leather. It is about four inchem in diameter.

Starfish (Radiates).-Children who live near the seashore can catch a starfish any day-for there are thousands of them-and keep it in salt water for study. These animals are built like a
five-pointed star with arms about an inch long. At the end of each arm there is an eye-five eyes in all. The eyes show the arms which way to crawl, and underneath each arm are rows of little suckers by which the crawling is done. The mouth and stomach of the animal are at the center of the star.

There is a ring of nerves around the animal's mouth, other nerves running along each arm, and little nerves running to each sucker. The animal can feel and see, and smell and breathe. Its young are hatched from eggs. Inside of its body are channels through which water and otice fluids circulate sonewhat as red blood circulates in our own veins.

If one of the arms is broken oft it dies - it does not grow into a new animal; but a new arm grows in its place. Injuries like this are quickly made whole again in the lower animals. If your leg were cut off it would never grow again, of course ; still less would it grow into another boy. The starfish can replace a lost leg; and a worm cut in two grows into two separate worms. The starfishes eat tnussels and oysters. When an oyster is open (trying to get its food) the starfish places part of its body in the opening and sucks the soft part of the oyster up into its own mouth.

Oysters have two shells joined by a hinge and shut by a muscle. (Look at the two shells of an oyster and see how the hinge is arranged. The muscle is fastened whete the purple spot shows on the inside of the shell.) The gristly part of the
body of the oyster is the muscle itself and the soft greenish part is the oyster's liver. The layers around part of the body are the oyster's gills by which it breathes. Oysters have a heart somewhat like our hearts and a set of veins and arteries, but no red blood, of course.

The young of clams, mussels and oysters come from eggs; and a single oyster may produce a million young. 'The food of oysters is made up of
 upen shell; but they can be fattened on corn-meal, too.

Pearls are formed instie the oyster round some little grain of sand, somewhat as our own thesh might giow around a tultet.

Mother-uf-Pcarl. -The oyster bulds its own shell of layers upon layers of the very same stutf of which panls are made, adding to them trom the inside.

These tho layer one upon another rake fine ridges like parallel lines and light shining on the whets is meatered so as to make the rainhow colors. The coloto are duc to the ridgen, as you can prove by taking an impression of the inside of the shell in wax and noticing that the little ridges in the wax give the same rainbow colors.

The Lobster. - The group of animals to which the lobster, the crab, and all insects belong, has the two sides of the bordy alike. The legn, jaws and so forth are arranged in pairs. The tarthworm is made up of a number of rings, one ring like another. The arrangement of the starfish is five-fold; it has tive arms. Mrui and the higher animals are built so that the right-hand and lefthand halves of their bodies are alike.

The lobster has a heart which pumps its colorless blood through arteries. . It breathes through gills neat the roots of its eight walking legs. It has a liver, a stomach, muscles, cyes, ears, feelers. it con smell. It has a memory, too, for lobsters that have been caught, marked, and then set free again, hate found their way bach to their old home, several miles awas. The lobster sometimes has as many as 100,000 eggs. The natural color of its shell is dark green which becomes bright red when the anmal is boiled for iood. Once a year the Wheter moults that is, itwsplits and discard, its old shell and appears in a larger and sotter shell that has been tetmed inside of the wh one. The new shelf sem homens and the animal lives anside of it for anuther yeat.

Fig. 177. The lady-crab (one-third of natural size). This is one of the swimming crabs and is good to eat.

Crabs.-The hermit-crab has no shell of its own but selects an empty sca-shell to live in, backs into it and carries its house about uatil the house becomes too snall, when it chowses another and larger shell. (S.ee the picture, Fig. 175.)

Insects. - Insects have the head well separated from the hodv. Some insects (the grasshopper for instane) get their food by biting it with their jaws; others (the bee and butterly) suck their food up through at tube'.

Fif. ig8. The Regal Moth, naturalmize. It has olive and red "Ing. with whow mpots.

Insects lay eggs from which the goung are hatched, but the egrg does mo hatch into a complete insect. The hutterly's exg lirst hatches into a larza (ohe catupillar for instance); then the larra turns into a $p_{u} p a$ (the caterpillar turns into a chiywalis); and finally the \quad oupo turas into the insect (the chrysalis turns into a butterfly).

Fig. 179. Larva ot the Rewal Moth, one-half of the natural size. Its head is to l_{i} lath hand.

Fic. 18. The mak and temale mothe of the 'Pent Caterpillar (the ftmale in the larger , These are very destructive to apple trees.

Fig. IKI Masnc - of the Eggs of the Tent Moth Camplizer on the bracch of a tree The eggs stav on the tree all wiriteréand hatch out in the spring.

Fig. 192. Nest of the larvæ of the Tent Moth Citerpillar it looks like a hind of spider web. The larvat live on it in a colony and each one of them turns into a moth.

Pick up three or four of the common red and black hairy caterpillars and put them in a box with some fresh clover leayes. . Before very long you will find one or more hairy cocoonts, The
caterpillar inside of this in the form of a smooth brown pupa or chrysalis. A week or so atter the cocoon is formed it splits open at one end, and a winged moth-i he Isabella Tiger Mothcomes out and flies away.

Intelligence of Insects: Ants.-Insects have a brain and are able to do quite wonderful things. The brain of the ant is proportionally larger than that of any other insect. Some of the ants (the rust-red ants that live under large flat stones) make slaves of other ants (black ants). They go out in war-partier, capture the black ants and make them work. The black ants feed thein matsers and build their nests for them. The agricultural ant of Texas clears a space about it ant-hil and allows only oue kind of grase t g grow there. It harvests the ipe grans seedin and stores them away for winter food. From tinn to time the neted are brought sut and dried in the non to pewent their -prouting. The army ants ot South Africa live by lunting and magrate trom place to phate in search of tood. The young ants ace carried by the older ones. When the army of mints arnese at any place every living thing trics to ectape. The ants devour all the other insects, spiders, bids, tats and to forth. When the come to a house the men leave it and in a tew hours werything that is edible is eaten. If these ants could make a plans and remember it they could drive all the inhabtants of at ountry out of it. The bufecotting thit of South sinelica work in gangs. One gangerer "? the the and cuts the leaves into pieces of a"chers size; another gane jick up the pieces that fall to de"e betind and catries them to the dow of the anthill. Another guxng stores the leaves away. Some ants heep and feed the aphis insects as we keep and teed cows and regularly "milk" them for honey.

Ants Hate a Kind of Language.-Two ants continually stroke each other with their antenuce (feelers) and can tell each other where to find tood; that an enemy is coming, and so forth. They are fond of their comrades, remember them, and show tigns of joy when they return after an absence of more than a year.

Bees.-The bumble bees build nests in the ground. All of them except the queen-bee die every autumn. In the spring "each queen-bee lays eggs that develop into worker-bees. When
the worke-bers are grown they gather and stros food in the nest. They live together all summur and onty the queen-bees burvive the winter. Our honey best teed ther yomang while they ure unable to fecd themselves. Whet a tolony of honey-boes gets tow large a number of the workir. "wam" and emigrate to a new nost taking a guren bee with them to lay cyge.

Fig. if3 A swarm of tres.
 the honegrmb whith is mate of heeswax.

Intelherene of Honey-Bees.- A hive ef bees is a city of So,ows inhabitate and the wax house of the cits- the celln at the honey-comb-have all been built by the swarm. The city has uts laws and its, customs, its queen, it, roval family, it, workers. Its people do diferent kinds of work-nome make wax, some make the wax into cells, some form the cells inte the correct shape, some gather honey from the flowers to serve as a store of food for the coming winter, some gather pollen to feed the young.
bres. Others go out early in the morning and return to tell the hive where the best flowers are, others keep the hive ciean, others guad the door, others teed the young and the queen. There are more than 60,000 separate cells in a full hive. The wonderful thing about these cells is their shape. Look at a honey-comb and you will nee that cach weil has the shape of a six-sided lead petull with a bluntly-pointed end.

Mathematis ians can selve by matho nation much too hard for you to understand now a problem like this one: What in the shape of a cell that shall have the greatest possible contents and at the same time the smallest possible surface? 'You can see for yourstlf that it cannot be a sphere, it cannot be a cube. It is in fact excuctly the shape of a bee's cell-a six-sided prism with blunted ends. The bee has solved this problem all by itself-not by mathematics but by practice.

In these cells honey is stored and the queen bee lays the eggs from which new swarms are to be norn. When the city gets too full, and after a new queen bee bas been born, the old queen leads more than half of the inhabitants away in a flight that lasts until they find a n w place to live-nsually a new hive that the beekecper proide for them-and a new city is built in the new hive.

Before the: lave the whl hive they have made about 120 pound of homey, that is, more than in tumes the wright of the bers who made it (just an if a city of 80,0 mon mon should make for ow tous of provisions). All of this they leave behond them to kerp the old city supplied, and industriously make 120 more pounds for the mow city they have founded. And so each hive decen making new hives year after year. Each one of the now hives is governed like a city-has its queen, its royal family, its drones or male bees (who do not work), its workers (who are temale bees, but who lay no eggs-all the eggs being laid by the queen). If too many queen bees are born, the workers kill the useless queens. If all the queens are dead and there is no queen to lay eggs for the new city, the workers feed one of the very young bees on a special kind of food that makes the young bee turn into a queen. If it had not been so fed, would have grown un to be a there worker.

If you were up above one of our great citics looking down on it and trying to find out what all its men and women were doing
you would by and by discover that each one was trying to be as happy us possible for himself. Each person is usually trying to be hapyy now, this instant. If you look in the same way at a hive of bees you will find that each bee is working so that the new hive that is going to swarm oft by and by shall be as h possible by and by. Most men work for the present time; most bees seem to work for the future.

Spiders.-The webs of upiders are beautiful pieces of work and show great intelligence. Some spiders make nests in the

Fig. 184. One kind of spider spinaing its web.
ground and close them with a trap door on a hinge. The door is covered with dirt and looks exactly like the ground when it is shut, and this makes it hard for the spideres enemies to find the nest. When an enemy does find it and tries to open the door the spider inside holds it shut with all his force. ${ }^{2 / 2 \times}$.

Insects are very strong. A nly's wing vibrates 600 times in a second. A flea can jump much further in proportion to its size than any other ani-mal-much further in proportion than even the kangaroo. A bee can mall inconty tmes its own weight, while a honer can only move about sixsevenths ot its uwn weight.

Iusects are both useful and harmfin to plants. They are useful in carrying the polien of one flower to other flowere so that the other floweri, can be fertilized. They are harmful tov. In four years the Kocky Mountain locusts as they moved eastward did $\$ 200.000,0(x)$ worth of damage by spoiling the crops n Dakota, etc.

Bettes and other insects are useful to man by eating up or hurving offal. Insects are often harmi.: to man, too. Honse Hies carry the germs that pronline typhoid ferer. Monquitoes carry yellow fever germes The lagge white ants of the tropics destroy the cmbry, of houses by eating the fiber of the wood.

Vertebrates are animals with howhones which form part of bony skelerase 'llyy never have more than two pairs of limbs-rither two arms and two legs, like men, or four legs like horses. They have a brain-box, or skull; and the mouth, two eyés and two ears are in the skull. All vertebrate animals (fish, frogs, reptiles, birds and mammalsthose that suckle their young) have a heart, and birds and mammals have red blood. The fish and
the tadpoles breathe by gills, but all the rest have lings.

Fig. 185. The vertebrate animals succeed the intertebrates (animals with no backbone). Animals with hackbones spread * Into five branches.

Fishes are cold-blooded animals that live in the water. They are usually covered with scales. They breathe through gills. Their tins are the beginuings of limbs.

Amphibians (frogs and the like)are born from eggs, become a complete animal of one sort (a tadpole, for instance), and then change into a complete animal of another sort (a frog, for instance). The last sort always has legs. Amphibians live in the water and also on land. They are half way between fishes and reptiles.

Reptiles are cold-blooded animals either with shells (turtles and the like), or with skins (snakes, crocodiles). Some live on land, some in the water.

Birds are warm-blooded, air-breathing animals, with feathers.

Mammals are warm-blooded and air-breathing animals. The young are born alive and are suckled by the mother. Whales, for instance, are mammals, not fish.

In what follows we shall speak of some animals of each sort.

Fishes.-The codfish lives in the North Atlantic Ocean, especially on the Grand Banks. The female codfish produces eight or nine million eggs every year. The eggs float on the surface of the water. The mother pays no attention to them and in about twenty days they develop into young fish. Some
fishes have a pouch in which they carry the eggs and young fish about till the young are large enough to take care of themselves.

Fic. 186. The Mammals of, North America-the highest, to wards the top. This picture fits at the very top of Fig. 185.

The Dace, a small fresh-water fish, lays its eggs in a running brook, then covers them with a lot of pebbles, "then lays more eggs and brings more pebbles, and so on till a little heap of pebbles is formed, in which the young fish are hatched.

Pig. 187. The Codfish. The real fish is about seven times as long as the picture.

Some fish can fly; their fins are like wings and they make long leaps out of the water and back again. A few fish make sounds to call each other. Most fish have eyes, but those in the Mammoth Cave in Kentucky are blind. Eyes are of no use in the dark, and these fish, whose ancestors could see, have lost the use of their eyes, just as the horse has lost the toes which are of tho use to him.

Some fish (the tofpedo, the electric eel) have an electric apparatus in their body so that they can give an electric shock to anything that touches them. A fish in the East Indies sometimes travels over land from one pond to another, and is even said to climb trees by means of its spiny fins.

Fish show fear, anger. affection, patental feeling, jealousy, playfulness and curiosity ; some of them can be tamed.

Fig. 188. Sticklebacks. The male soll : the upper one in the picture) build, the nest under water. Several females lay their eggs in it and then the male guards the next to keep enemies away till the young hatch out.

Frogs are born from eggs. The eggs become tadpoles, that is, fish; they breathe through gills, live in the water, and have tails. The tadpoles
develop into frogs, which live both on land and in the water (amphibiais) breathe with lungs, and have no tails. Some toads live in trees and their

Fig. 189. The Toad: notice how well tris color and spots match the color and spots of the ground. The toads that do not match the ground are seen and eaten by their enemies (snakes, birds). Those that do match it live and have young which resemble their parents.
skins change in color to match the green leaves or the gray bark. They escape their enemies in this way.
among plants, like the rat among mammals. It fits the conditions in which it lives; it survives because it is the fittest to survive in those conditions.

A female sparrow has five or six broods each year with four to six young in each brood. If we suppose that twenty-four young sparrows are produced each year, that the young sparrows breed when they are a year old, and that all live-and if all this keeps on for ten years-then one pair of sparrows will produce $138,000,000,000$ young ones in ten years! Of course many sparrowk are killed, and many die of disease, and some do not have twenty-four young in a year. But the increase is enormous.

Fig. 195. Blue Jay: It belongs to the same family as the crow.

Nests.-Most birds build nests, and sometimes show the greatest skill and patience in building. The tailor-bird sews leaves together with a cotton throut hat it makes, and pierces the necessary holes in the leaves with its bill. Some observers sey that it makes a kind of a knot in the end of the thread. The cuckoo lays its eggs in the nests of other birds and allows them to be hatched there to save itself the trouble.

Fig. 196. The Sharp-shinned Hawk. Its food is poultry and other birds. Hawks and English sparrows are the two birde that can leest le spared. No other birds should be killed.

Female birds usually sit on the eggs and hatch them and male birds usually feed the female and the young. The male ostrich, however, sits on the nest.

Mhration !r Diact.... Some birds live in the same region all the year romol. Dlost hids, howecer, migrate (travel) from worthern segions wo southern in the antumn and back again in tive spring. The journey 1s made in search of food and ot warm weather.

Frg. 197. Ruby-throated Humming Birds. They feed on insects and on the nectar of flowers. 'They buidel their nests in trees and lay only two white eggn:

Intelligence of Birds.-Gulls and crows open shellish by dropying them on rocks from high up. in the air. Wuodpeckers store acorns for winter
use. They feed on the grubs fattened by the acorns. Turkey-buzzards tell each other where food is by a bigh flight into the air which calls other buzzards from a distance. The Frigate Bird will not fish for itself but it follows the Booby-bird and takes the fish that it has caught. The nests of birds are constructed with great intelligence and are often changed in form when new circumstances arise.

Mammals. --- The young of mammals are born alive, and are suckled with milk by the mother. Qpossems and kangaroos carry the young in a pouch till they can take care of themselves. Mammals have four limbs whose bones are alike. Seals and whales have fins and flippers, dogs and cats four legs, monkeys and man two arms and two legs. All are mammals. Man is the only animal who habitually walks upright and has his arms free.

Horns.-Deer, rhinoceroses, etc., have horns. Deer shed their horns every year. Niost mammals do not.

Many mammals have good voices: the gibbon ape can sing eight notes-an octave-correctly. Their voices are used to call their mates, to give alarms, etc. Many animals (the bear for instance) hiber-nate-that is sleep-for a large part of the winter. Most wild animals have a color to match the landscape they live in (see page 175). Arctic animals: are usually white. A red polar bear would starve. Why?

BOOK VII: BOTANY.

Botuny is the science that tells about plants-" abont vegetable's, shrubs, trees. ${ }^{1}$ Suppose you see a cheyy trec in full blossom.* You know that, by and b, it will hear fruit. It will bear cherries wot liathes, not apples. The tree will grow larger, tow, as years go of. Wotany teaches us how the roots of the tree find food in the soil, and how the food is carried through the stem to all parts of the tree to keep them alive and growing. It tells what the leaves are and what work they do; what the flowers are for and how the fruit comes; why the leaves fall off in the winter when the tree gues to sleep, as it were; how the whole tree wakes up in the spring-time.

Tounderstand all this we must begin at the beginnikg and learn one thing at a time. And the beginping of plants, like the beginning of animals, is in hmall parts called cells.

Cd/ls.-All parts of plantsmare made up of very small cells, or cavities; flledup with living vegetable protoplasm.
${ }^{1}$ A tree is a plant; a shrub is a plant; a vegetable is a plant. When we say "plants"" we minn all kinds of planto-trees as well \&ishrubs and grasses."

You have seen a honey comb? It is full of large cavities bounded by walls. Every part ot every plant - the stem, the leaves,

Fig. 209. The growing point of a root of Indian corn (maize) sliced up and down. It is made up of cells. The cells are huddled together in the grosu. ing point (i) where the root is most alive; the very end of the ront is protected by a hard cap, the root cap (c) which bores into the ground like agimlet; the whole of the root is made up of a tissue of cells, and is covered by a skin (d, d). the fruit-is made up of very small cells, and each cell is tilled, usually, with vegetable protoplasm, somewhat as the cells of the housicomb are filled with honer.

If you take the petial $\mathrm{o}:$: flower, or a thin transparent bit θ^{*} saweed and hold it up between ..mir eye and the liyht, you can olten set little separate colls that make up the tissue- the woven web of the petal of the sedwed. (Tryit.)

Or, you can take the delicate rootlet of any seedling plam, cut it into thin slices, and then samme the slices with a magnifying glass or with a microscope. (Tr; it.)

Every part of a plant or tree is made up of such separate cells. They are usually separated by walls. If you cut a grape into two npatts, all the liquid ins:de of it does not escape because most of it is kept in place by the walls of the little cells that have not been cut.
The Cells Gontain Protoplasm that is Alive. No one knows exactly what life is ; but a planthat
is growing is certainly alive. Each cell of such a plant contains a slimy kind of matter (protoplasm) not so very different from the animal called Amoba. (Soe page 188.)

Fig. 210 . View of a slice of the root of a plant cut crosswise. It is very much magnified so as to show the cells. The hairs on the root stream out in all diections.

The Amoeba sometimes divides into two pa and each part becomes a separate animal. In the same way the cell of a plant often divides into two parts and each part becomes a perfect cell. Plants grow in this way. Where one cell was, you later on find two, then four, then eight, and so on.

Through canals running lengthuise of the cell the protoplasm of one cell is connected with the profoplasm of others on all sides of it. Sometimes the cell-walls iecone lihe cork and make the bayk of trees., Sometimes the cell-walls become like wood and make the stem. Sometmes the walls become like mucilage, as in the seeds of a quince. Remember that the cells are very small indeed. The largest are about a thirtieth of an inch in diameter; the smallest are less than a thousandth of an inch. There wonld be i.00amenooo of these smallest cells in a cubic inch.

Fig. 211. Four steps in the division of a cell. The lefthand picture shows the mother-cell, very much magnified. There are two nuclei in it, like two yolks in ay egg. In the nexl picture, which was taken a little later it time, a little wall is: beginning to grow across the cell. In the third picture the wall has sprend all across and has grown thicker. In the last picture there are shown two daughter-cells. By and by tach of thene will divide and grow, too. In this way each mother-cell will become the parent of hundreds of daughter-cells. The plant grows by the multiplication of its cells.

A plant is made up of thousands of cells just as a wall is made of thousands of bricks, only the cells of growing plants usually have empty sp. ies between them. In a fine spring day some plants grow three or four inches in length. Millions of new cells must be formed, then, in twenty-four hours. The cells form the tissues of the plant; wood-tissue, skin-tissue and so forth.
Color of Plants - Chlorophyll. - The walls of very young cells are usually transparent and colorless. When a plant is growing in the sunlight the cell-walls are stained with a green stain called chlorophyll.

Sunlight, acting on the protoplasm of the cell, makes a green coloring stain somewhat as sunlight acting on a photographic plate makes a dark stain.

When an onion grows in a dark cellar its shoots have a sickly pale yellow color. Bring it out into the light and in a short while they will become grea. (Try it, if you can.)

Horbs, Shrubs and Tress.-Merls are suft plants with very little wood in their stems (the catuip, for: example). Shrubs are plants with woorly stems that do not grow abor iwenty or thirty fert high.
 Trees are woudy phats taller han smobe

Aqnumis, Bicmia/s, Per, mencts. -. All shrubs and wes de peremate; they liwe on year atter ye or. Some herbs are annuals the moruing-clory, maze, oats, ete., for crample). They yron from the sech. bossom, and dicall in the sum seatom Bumenf

Etg. 212. Ditterent binds on rmois. (a) fin taj sevot of a plant
 tanment the the roots of grans or of the Dahbin): "(c) a thick tap-root (like the carrot root,
this kind have fibrous roots. Some beibs are biennials - they live for two seasons (tumips, car-
rots, beets, etc., for instance). They do not blossom at all in the first season but grow leaves and a thick root. The second season they bear flowers and form seeds and then die. Some herbs are also perennials (the peony, dahlia, sweet potato, the iris, etc.).

Fig. 213. A large tree with its roots. They spread out to get foodfrom the soil and to hold up the tree. Vou see that a good part of the tree is under ground.

The Roots of Plants.-Generally the root strikes downward from the seed into the ground.: Its business is to hold the plant up and to get the necessary food and water from the soil. The larger and heavier
the plant the firmer its roots must be fixed in the ground. The main body of the root is covered with many fine branches-root-hairs-little tubes whose business is to suck water up into the stem and to give it to the leaves. The more leaves there are on a tres the more water they need, and theretore the greater the number of the root-hairs.

Plant 1 common hean and wat till it has grown a tew leaves. Then caretully lift the phant with the soil round its aoots and wath away the soil in a washhasin. Hold the tooth up against the light and you can see the tine root-hairs growing from the ronte. Each root-hair is a little tule that sucks water up from the soil to feed the plant.

Work of Rools.--The water and some of the solid parts of the soil are sucked in by the root-hairs and passed to the interior of the root, from the root to the slem, from the stem to the branches, and from the branches to the leaves, flowers or fruit.

Fig. 214. A plant with a fibrous root. It has no tap-root and it dies every win. ter, and is therefore called an asnual-it lives only a year. The food of the plant comes from the soil; it is turned into sap and circulates in the plant somewhat as blood circulates in your veins. A tree without sap is dead. No matter how a tree is planted its roots will (generally) grow downward, and its stem upward, even in the dark.

FHo 215. How wa ons rise from the roots of plants (by root-fresulure as it is called). A footrule is laid along the glash tube to measure the height of water in the glass tube.

Roots grow downward, naturally ; stems grow upw:ard, natwally. Why? No ane can give a reason in words any more than one can say why young ducks naturally take to the water and why young chickens do not.

Here is an experiment thet yom wom tuy. Take a stong hathy plant hat is glowing in a Hower piot and cut it oty met above ther $40: 1$ A strons showt of a graperune is a good one to try Slip a short piece of rubbertubing over the top ot the (at off stem. Into the upper end of the tubing slip a small giass tule ot ahoat the ame kice ac the stem. Fow in a little water, and nolice how

Fin. 216. The ronts of Indian cork (datize). the water
rises hecase of the pressute from below. It riseb in the glar, tube now, just
as it rose, before, in the stem of the plant. Some of the solid elements of the snil are dissolved in the water and rise along with it: and it is in this way that the plant gets its food.

Mlant Food from the Soil.-The plant gets from the soil carbon, oxygen, notrogen, hydrogen, potassium, calciam, magnesiura, phosphorus, sulphur, iron and chlorine not as elements, but in chemical compounds.

 runners that takr ront at convenient distances.

A barley plant or an oat plant has roots that stretch several feet into the ground; if you measure the length of each root and rootlet and add all the lengths together it amounts to fifty feet ormore. An aninal can move about and find its food. A plant is hased to one spot and must send out its roots to find the food it needs.

Most roots grow in the ground. Some vines, like the Poison-ivy, or the Trumpet-vine, have little roots that are all above ground, in the air (aérial. rootlets they are called), by which they climb. Water-plants have few roots. Their food comes to them ready made. Marsh-plants have more ropts, and land-plants most of all.

Fig. 217. A mangrove swamp. The roots of the atrees are more than half out of the ground. They hold up the tree as a mast is held up by ropes.

The Stems of Plants. - Plants are made up of two kinds of material -- cell-tissue and wood. The stems of herbs contain little wood and much tissue; they are soft and fleshy. The stems of trees are nearly all woody. There are two kinds of stems. In the first kind the growth is from the inside outwards. Plants with this kind of stems are endogens. The stem of a sunflower or a cornstalk is a good example.

Fis, 210 A com wath cut acrown so as to show the bundles of fibers. I The pupil should cut and aplit a corn stalk and see for himelf.)

Our common trees grow in a different way. Every year they add a ring or layer of wond on the outside of the stem (but inside of the bark). If you count the number of rings you can tell how old the tree is. The thin kening of the tree is all on the outside, so that the oldest wood - the heart of the tree - is on the inside, and the youngest - the sap-wood-is just underneath the bark. The heart-wood is dead; the sap-wood alive. (The
pupil should examine a slice of the trunk of a tree and count the rings and notice the way the bark grows around the fresh sap-wood.)

Fig 220. The stem of palm tree seleral yearsold. It grows from the minde outwards. It is. tike the corn stalk, endogenous. It grows by adding new matemal on the inside. The ne's fibers are mixed in amongs the old.

I'f: 221. The plan on which lndian conle (maize) is built. The stall has here been cut into piecrs liach piece is on the sanic plan. Every tree and every plant is built on a certain plan. The plant keeps on carrying out this plan over and over again.

A coral island is, in many ways, like a tree. The coral near the surface of the water is full of life-like the sap-wood and the leaves of a growing tree. The coral deeper down was once alive and is now dead-like the heart-wood of the tree. In the coral island, as in the tree, a colony of live
growing cells is built on a foundation of cells once alive and now quite dead.

The stem of a plant bears leaves and buds; the root of a plant has no buds. This is a general rule, and is the way to tell a stem from a root. A few plants have underground stems just as a few plats have ronts in the air. The Irish potato we call, in common language, a root; but it is really an underground stem.

Fig. 222. The brunches of a sour-cherry trec. Notice that in this tree the stem is lost in the branches. Maples, oaks, elm's and other trees have stems of this sort.

Branches. - All the branches of the same oak tree are somewhat alike, and no two of them are exactly alike. The branches of all white oak trees are somewhat alike. You would know them anywhere for white oak branches, but it would be hard to find, in the whole country, two branches exactly alike. The branches of a tree grow from buds. A bud that is on the south side ut a tree pets more sunlight. and makes a better branch than a bud on the north side. Some branches die when they are very young ; some live but do not flourish; some have enough sunlight, but not quite enough food. There is a strug-

Fug. 224. A mullein stalk, which dous not have branches. The buds grow close to the stem. gle for existence among branches as there is among animals. The branch or the leaf that gets the most food and the most sun-
light grows best and lives the longest and healthlest life.

Winter Buds. - A plant gets its food from the soil through the roots and when the spring comss it begins to grow quickly after its winter sleer. During the warm weather the tree or plant is fidl of leaves. If you look at the branch of a tree jut where the stalk of a leaf joins the branch, you will find a little bud-a winter bud, so called. (Try it.)

Fig. 225. Maple leaves. Notice the winter buds at the forst of the stalh of cach leaf next the branch. There are winter ants at the end of the shoot also.

Fall of the Leaf.--In most of our trees the les wh fall in autumn (called " the fall"). Their work "s done. They are ripe and die, even before the f sist kills them. The stem falls off with the leaf nnd leaves a scar.

FIg 22f. Leaf-scars of hichon, thecs. Aboie each scar you an ser the winter bud. The bud becomes a growing point next soring.

Evergrecns are trees and shubs in which the leaves do not fall in the winter.

Buds.-In the growing season the buds are small and many persons do not notice them. In the winter the bud is tightly wrapped up, but it is easy to see because the leaf is out of the way. In the spring the buds grow to be branches, and new leaves grow on the new branches or shoots.

It is easy to make the bud swell in a 100 m in winter-time, even. Cut some branches two or three feet long-from a red maple tree, a lllac bush, a peach tree, an apple tree, etc.-in the winter. "Put them into jars or vases of water just as if they were

Howers. Renew the water every day or two and cut off the bottoms of the branches once a week so a to give a frow surface heme. In a wetk or twisthe budh will legin to swall. In two
 in a 100 m that is ant lighterl weh idt. They flower more yainly if the vase are net m the emphane for a few hours every day.
I. errers.-A romplete leaf has three parts - the blati, the tmot-stalk that fistens the leaf to the brawh, and the syifulss (which are often green and leat-like themselves).

Fio. 227. Thece complete lease wh a indoplant. Notice the leaf who心 hade is upheit: it has a lont-stalk and stipuinw.

The pupil should gather neveral diticrent kind of leaves and examine them catefully. The hlade of the leaf is made up of ereen pulp covered wihb a thin shin. it is supported by a kind of iramswork of thick pieces-the ribs. Usually there is a rib in the middls-the mitw-ithend other smaller ones called wizs
and veinlets. Hold a leaf up against the light and you will see how it is covered by a network of veins. If you press leaves in the summer-time, you can have plenty of specimens to examine in the winter.

The Shapes of Leaves.-Leaves are of all kinds of shapes and er.ch shape has a perticular name. The names are given here so that when you read the description of a plant, you will know what shape is meant. For instance, the leaves of a willow or peach-tree are lanceolate like the fourth figure below.

Fig. 228. Linear, oblong, elliptic, lanceolate, spatulate, ovate, obovate, orbicular, reniform, leaves.

Leaves Love the Sunlight.-The more sunlight a leaf gets the larger it grows. Leaves are arranged on a tree so that, on the whole, each leaf gets its share of sunlight and air.

Fig. 229. Leaves of the Norway Maple. Notice that the leaves that have had the most light are the largest.

Fig. 230. Leaves and flowers looking for sunlight.
4

- (p.253)

Arrangrment of the Lecazts an the Shout.-..The leaves (and the buds from which next year's leaves

Firs. 231. The leaver of the hack Walnut tree are arianged in pairs ; each haf of the pair in of posite the other.
are to spring) are arranged on the shoot in two mays. Either the buds are ofposity each other, or they are alternate.

Frg. 23^{2} The leaves of a Mibery shout are atternati. The leares are not atranged in pars, but onc by wac.

Brathing-pores (or Holes) in Lecries. - Every leaf has a framework of ribs and veins that hold it together like the ribs of an umbrella. The hade of the leaf is very thin. but when it is lonked at under a microscope it is scen to have throsands of little pores, or breathing holes.

On the lower surface of each leaf of a lilac bush there are more than 150,000 breathing hole: 10°

Fig. a33. The leat of Poinon-ly. Notice the riba and vains. : Le cmeful not to handle it.)
every square inch! Each leas has several hundred thousand pores, and the whole bush has millions and millions. The breathing holes take in air and carbonic acid gas. Plants necd the oxygen of the air as animals do, only they do not need so much of it. Plants also need carbonic acid gas. They breathe it in. When animals breathe, they breathe carbonic acid

Fig 234. Purt of the thickness of an ivy leaf, very much magnitied. The bottom of the picture shows part of the bottom of the leaf. The breathing holes are on the under side of the leaf. One of them is shown in the picture surrounded by cells that mahe up the leaf itself. The leaf takes in air and carbonic acid gas throumh thousands of pores of the sort. The leaf breathes in this way.
out: if they breathe it in they die. This is one of the chief differences between animals and plants. Remember that animals have pores in their bodies. Perspiration comes from pores in the skin. A man's body has over $2,000,000$ pores.

Fig. 235. Plants give off water-vapor from their leaves.
Leazes Give off the Vapor of Water from their Surfaces. - The water taken in by the roots of a plant rises through the whole plant and a great deal of it is given back to the air from the leaves as invisible vapor.

You can prove this as follows: Cut off a green shoot of any plant (rhubarb, for instance) and put the end of the shoot through a hole in a curk and stand the shoot in a bottle of water. Put a tumbler upside down over the shoot and its leaves, and notice that a mist soon shows on the inside of the glass. The green shoot sucks up the water. The leaves use all they need for food. What they do not need they give off as invisible water-vapor, and this vapor soon fills the inside of the tumbler. The cold tumbler condenses the invisible water-vapor into visible drops (just as the invisible water-vapor of your breath is condensed when you breathe against a cold window-pane.) (Try it.)

Whythe shade of a Tree is Cool.-The shade of a tree in cool in the first place, because the leaves keep off the direct sunshine. It is also cool because the water-vapor given off by the leaves is always evaporating-and whenever water evaporates, becomes vapor, it uses up heat to do it, and leaves the space round about much cooler. Tie a wet towel round your bead. The water will evaporate and leave the towel nearly dry. As it does this your forehead will become cooler.

How Plants Gct their Food.-A green plant gets

 its food frrst, from the soil, through its roots; second, from the air, through its leaves.Dry a green plant thoroughly in an oven. Water will pass off. All this wutcr came from the soil. Burn the dried plant in a fire. Gas will pass off and ashes will remain. All the elements that came from the air were in the gas. All the ashe came from the soil.

Plants contain much carbon; and you know this because by burning a mass of plants or trees you can make ch arcoal-which is nearly pure carhon. About half of a dried dead tree is carbon.

A Green Plant gets its Carbon from the Air.-The plant breathes in air (air is a mixture of nitrogen and oxygen gases, with a small amount of carbonic acid gas), and sucks the carbonic acid gas into the little cells inside the plant. If you put a piece of caustic potask into a mixture of several different kinds of gases the potash will absorb all the carbonic acid gas out of the mixture and leave the rest. We know that it does so, although
we may not know exactly why. In som what the some way the leat whorbs all the carbonic acid anson of the air and leaves the nitugen. We do not know (x,uth) why but wr how that it does so.
 the green leat and somenyo.en wid. in brathed ont.

A tree ner ds all ar natry yll wifaleaves in onder to make tood enomeh to live, It jou srip hait the leator from a tree it will die.

 on (ommon starch) is made sut of carbon, hydrogen and $n y$ yen ; $\mathcal{C}_{6} H_{1 n} \mathrm{O}_{3}$. The fimit mates emeh out or cabome mid una (con) and watre : OHi, All green sase in the

 plant places at : 1 hathe of watir
 then bebohere arr ate bat mont of
 sunlight an and domathectach. It is the -anhight that doe the work. Leaves krpt in the dark edmot mathe stareh and thetefore can not mahe food enough for the tiee.
 Sugar is $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{\mathrm{i} 1}$. The starch caunot be dissolved it sater and therefore is not $i 1$ for plant-food, bectuse plant-food misi be able to be dissolved by the water that comes from the less, and thus to run all through the body of the plant. Dhatt, time lewir starch into sugar nomewhat as starchy foots ate thrned to wagery foods by the saliva of one's mouth. Sugar ion be dissolved in water and therefore the sugary water can and donem run throughe. out the plant as $c_{\text {a }}$. The sugar maple has a gratateal of very. swoet sap which, when boiled, makee inaple-sugar.

The Sup. - The sap flows everywhere in the plant somewhat as blood flows in our veins. Some of it flows from the roots to the leaves; some of it flows from the leaves to the root. The sap from the roots takes up food from the soil; the leaf sends down its sap; the two together manufacture new vegetable protoplasm. Exactly how this is done no one knows yet; but it is done. The life of a plant gues an somew hat like the life of an animal. ${ }^{1}$ It takes in food, digests it, sends it to all parts of its body, manutactures cells

Fig. 237. Leaves of the Venus' Fly-Trap. of protoplasm. These cells multiply and the plant grows. When the protoplasm in the cells dies, the plant (or the animal) dies.

Ilent. thet ('utch Flis for Food--Whore ra phut ist imesica called Venus' Fly Trap that catcher Hiew and wats thess' ' 'hare hairs on each leaf are very sensitive like the whinkes of a cat. When a fly touches one of these hairs the leaf closes up with a snap and holds the fly fast. It the fly is alive the leaf keeps closed and sucks the fly dry and then opens. If it is dead the leaf opens almost at once. Somehow the leaf is able to tell that a dead fly is not the food it wants. Blue-bottle flies, spiders, caterpillars and even bits of raw meat are greedily taken by this plant as food.

Flower-branches.-The branches on which flowers grow are born from the winter-buds. Some-

[^4]times the flowers grow directly on the stem as in the mullein-plant. (See Fig. 224.)

Solitary flowers often grow on the end of the main shoot as in the common white-weed (ox-eye daisy) of our fields.

What flowers Are For. - The plant bears flowers in order that they may produce seeds and in order that the seeds may produce other plants of the same sort. A single elm-tree might lise its uwn life out without producing seed, but if no elms produced seed there would soon come a time when no more elms would be fround on the earth. If none of the smith or Jones families had children the very names would soon die out.

We are apt to think that the beauty and scent of the flowers are made for us - for men. We certainly get the: benefit of them. We shall, however, soon see that the flower is a wonderful arrangement for producing seed, for protecting it when it is produced, and for making it fruitful. The color and

Fic. 238. Hyacinth flowers grow from buds on the stem of the plant ; ns does mig. nonette, etc. scent and honey of the flowers are for birds and bees, not for us; but we can enjoy them, ali the same.

Fig. 239. The dandelion bears a solitary flower at the end of the stalk.

Fic: 240. The flowers of the Bridal Wicath (Spirca) are horoe in clusters, many clusters on a brauch.

The calyx of a fiower is the outer and lower green cover. You can see it in the picture of the buttercup sliced in two. (Fig. 242.) Let us call this cover a whorl (that is a whirl-a circle-that makes a part of the flower). The next whorl is called the corolla. It is made up of the five bright yellow

Fig. 241. A buttercup flower.

Fig. 242. A butter. cup flower sliced in two.
leares of the buttercup flower. Double roses have many leaves in their corollas.

A calyx often has several leaves; each one of them is called a scpai.

A corolla usually has several leaves; each one of them is called a petal.

A flower is borne on the thickened end of the flower-stalk; this end is called a torus.

Look at the last pictures again. Inside of the petals of the buttercup you will see: first, the stamens of the flower (that is the little rods that stand up highest, each rod having a thickened end) ; and, second, the pistils (that is the little clump inside of the ring of the stamens). The pistil is the seed-bearing part of the flower. You must examine all sorts of flowers and find the stamens;

Fig. 243. A hollyhock tlower sliced into two. The fine little hairs with thickened ends are the stamens (point them out). The clump in the middle of the flower is made up of pistils (point to it).
and pistils in each one, if you can. . They are differently arranged in different flowers. Notice that the ends of the stamens are always thickened. The thickened end of a stamen is called its anther. (Point out the anther in the last three picturesand find them in real flowers.)

Pollen is Borne ly the Stamens.--Pollen is the dust-like grains on the anther. The violet produces about a hundred grains of pollon in each blossom, while the poppy produces more than three million grains, and some tlowers (orchids for instance) many millions.

FIG. 244. A plum hlossom sliced in two to show: se, the \therefore pris; p, the petals; stix, the stamens. The pistil occupies the mivide of the blossom and consists of three parts : o, the ovary; s, the style ; st, the stigma.

The Seeds are Borne by the Pistils.-The ovary (o) ripens into the fruit. The anthers of the stamens (s / a - not s, not $s t$) are tipped with pollen.

Fertilization of Flowers.-Flowers will not produce seeds unless the egg-cells in the ovary (o) are fertilized (made fertile, made productive) by pollen- . cells from the anthers.

A grain of pollen falls on the stigma (st in the last picture). There it absorbs the juices of the stigma and grows a fine hair-like tuhe. This tube grows downward through the style (s in Fig. 24f) and reaches the ovary (o). When the phlen-cell meets an egg-cell in the ovary, the tionjun and the tgy-celi rinens into a seed.

Fsc. 24.5. In the right-had fart (B) yon see ther pallen of a plum blossom estaping trom the anthe' It halls as the siryma
 the urary. There they meet with and fertila the rew-ith. Ead fortile eggrecell grows into a secd.

Fertilizalion of Flozuers.-A flower may be fertilized by its own pollen; but the seeds grow best if they are fertilized by the pollen from other fiowers.

Cross-fertilization is the fertilization of the eggcells of one flower by the pollen from another flower.

Pollen is carried by the winds from flower to flower.

Pollen is also carried by insects and bees from flower to flower.

Plants that depend upon the wind for bringing pollen to them usually have small flowers with little odor. They do not need to attract the bees by their odor. Flowers that are fertilized by pollen carried by bees usually have large gay flowers with a strong odor. Grasses are fertilized by pollen borne by the wind and so me oak trees, birches, elm trees, poplars and pine trees. The tlower, of such tices do not close at night. They must aluays be ready to catch what pollen the wind brings. Flowers that close at night are usually fertilized by pollen carried by bees. The bees do not tly by night.

It all the bees in the world should suddenly die, more than 100,000 species of Howers would perish, too. The bees can not live without the flowers, the fowers cannot live without the bees, and mankind would find it very inconvenient to live without the fruits which the bees help to fertilize when they are flowers.

Fruits.-The ovary filled

Fig. 246. The pollen of this flower is dusted over the back of the buny bee who enters the flower to get its nectar, its honey. When be enters another flower of the same snrt he leaves pollen there, and thus the second flower is cross-fertilized. Strawberry plants, for instance, are fertilized entirely by bees. with seeds ripens into the fruit. It may be a berry, a stone-fruit, a nut, a grain, or a pod. IIickory nuts, chestnuts, acorns, are fruits just the same as peaches, apples, etc. Beans and peas bear pods as fruit. Think of all the fruits you know; and say where the seeds are in each kind.

Life in Sceds. - A seed is alive-the protoplasm in it is alive-but it does not begin to grow until

Fif.. 2f7. The frut oi the black majie. Fraits of thi* shape are called key-fruits.
the spring comes. Seeds in a dry place will keep alive for several years - some for more than fifty years. But the storics about "Mummy-wheat" grown from se"ds found in the coffins of Egyptian mummies where they had been for thousands of years are not true.

Hoz' Secds are Scattered.When the fruit is ripe the seeds are ready for planting. Usually the tree has to do its own planting. The tree that bears the most seeds and scatters them furthest abroad has the best chance of producing new trees of its own kind. Such trees are, then, most numerous.

The seeds of the dandelion and thistle are carried by the wind. Some seed-vessels burst when they are ripe and scatter the seeds in this way. Birds eat fruits and digest the pulp but excrete the seeds, and thus sceatter them. Fruits winh burs cling to the fur of animals and are thus scattered far and wide. Nuts are buried

Fig. 248. The seedpod of the balsam plant explodes and scatters by squirrels; some of them the seeds.
are not eaten but grow to be trees. Finally, men plant the seeds of the plants they value and take care of the young plants. The plants cared for by men have, accordingly, a great advantage in the struggle for existence.

Hoze Sceds Grow to be Plants. - Each seed contains a young plant all ready to grow.

Fis. 249. A seed in the ground (the middle one in the picture) grows a root, and a stem, and leaves, and becomes a complete plant. The oniginal seed contained a young plimt all reaty to grow.

Take an almond out of its shell. Soak it a little in water and pull off the thin brown outer coat. At one end of the meat you will find a little plant, or bud (called the plumule), all ready to grow. (Try it.) The meat inside a cherry seed is like an almond and you can tind the plumule there too. (Try it.) Open a fresh morning-glory seed; or a
dried one that has been well soaked in hot water and see what you'll find. (Try it.)

Plants Sometimes Grow from Ruds.-Cut up a potato leaving a hud or "eye" in earh piece and plant the peres. A phan will grow from each piecr. (Try it.)

Plant, Sometimes Grow from Cuttoncs.--A bit of rose, or greranium or carsiation stem may grow it it is stack in the ground.

Fig. 250. A geranium grown from a cutting. The short cutting is tied to a wooden toothpick to keep it upright.

Fig. 25 I. Cion of Apple. The Cion Inserted. The parts must be well wased to keep out the air.
(Try it.) The tips of strong upright shoots make the best cuttings. Each cutting should have a joint near its lower end. They should be planted in a box about five inches decp filled with loose saudy soil. In about a month, roots will form and new leaves will come at the tips. Then they may be transpianted.

Firwit Trees Grow Frum Grafts on the Stems of Other Trecs. -Thee cions (slips from the tree) are otten grafted into the stems or branches of cther trees.

Fra. 252. The nmall-fruted haghark hickory in the winter time.

Such grafting is tone in the spring, using cions cut in the winter. Pearn gratted on quince trees grou well; but quinces gratted on pears do not grow so well. Tomato plants grafted on potato plants and ulso potato plants grafted on tomato plants grow well. When the potato is the root, both tomatoes and potatoes may be produced. When the tomato is the root, neither . tomatoes nor potatoes are produced, "Chestnuts can be made to .
grow on sorne kinds of gak the but not on others. The reasons for thene things ars not well understond. We have to find ont what a graft will do by trying the expriment.

Fig. 253. The swett cherry in the winter lime.
The Forms of Plants.--There are differences in the leaves on the same oak tree, differences in the
stems and branches of different white-rak trees and yet, in a general way all white-oaks look alike. All red-woods look alike; all elms look alike. Fach tres tund carh kind of plant has it, w..n habil of groweitg. Oak trees have a habit of growing in a cetain form just as liges or sheep grow in a certain form. New brat he frow in the stme form every year becanse the gen fiom buds which are arranged always on the hamte plan in each tree.

 ing down forn its branthes.

Trees Susgest Certain Ferlin. - The oak-tree is strong and sturdy; the baly-hi is is slender and grac ful: the oypress is olomer, the pine is solemn; the red-wood is majostic. When we look at any of these trees they give us fwhings of pleasure or, it may be, of gloominess or pain. 'To be in a red-wood grove is like being in a s rand churcla.

That is hecause the light of the pky comes to you from far over-head in such a giove, just as it does in a great cathedral. In the same way we have special feelings about the mofiest violet, the lovely wild rose, the formal dahlia, he pure white-lily, the flaunting peony, the stately a cander. the gay phlox.

Ex: 255. A giady actus on the Arizona desert.
If you look at ahy lardscape and find it heautiinl, su will tind that there are three things that nak. up nearly fll of your enjofment: First, the shapes of th- !hgand valleys, second, the shapes of the clouds. and third, the colors and shapes of the trees and phatis. "If you imagine any one of
these three things to be different either in shape or color your feeling about the landscape will change. Think of any fine view and imagine all its trees and all its grass to be dead. Your pleasure would go if they wert to change. You owe them thanks for being what they are.
 the reximand ath the "big uce" (Sequea) of california grow to a great height and are, no doubi. mort than a thousand years old.

Olives, fig trees, yew trees live for many conturies. Oak trees maylant, for 1,500 years, cedars of Lehanon about half as lone.

There is a cypress in Lombatdy, t20 tert high and 23 fect in girth, that is nealy $z, 0(x)$ years olla. Framols the First, King of France, who died in 1597, diove his sword into it in despair atter he had been deleated in a battle, and Napoleon I, Emperor of France, altered the road he was building across "the Alps so as to spare it in 1800 .

The Struggle for Evistcnce Among Planis, Trees, Leaves, Branches, ctc.

The Earth is filled with prants. The strongest and fitfest survive; the weaker perish Plants
struggle for room to grow in; for food and moisture in the soil; and for sunlight.

Fig. 257. The pine trees used up all the food and moisture in the soil and left none for other plants until man took a hand in the struggle and cut down some af the pines. Then, and not before, other plants grew in the open spaces and along the road-way.

Cacti will grow in deserts; eucalyptus trees where there is little water; mosses on rocks. They fit their surroundings. Live-oaks and willows and geraniums would die in such spots.

Colors and Odors of Flowers.-In 4, 180 flowers of all kinds : 1,200 were white, 950 yellow, 920 red, 590 blue, 300 violet, 150 green, 50 orange, 20 brown. It is an advantage to a flower, then,

Wh be white yellow or red. More bees and bledn see it and come to cary its pollen to other fiowers of the sames sort.

"	-	y 50 srlow	"	75	"	"	*
"	*	gari fed	"	8 :	'6	"	${ }^{6}$
'	-	sym hue	6	31	s6	4	4 6
"	16	3 (x) violet	*	-3	"	,	\checkmark
\cdots	"	150 ¢̈rers	'*	*	\cdots	*	،
-	.	\therefore arthege	،	3	.	.	-
"	-		"	1	"	'	\cdots

 of flank. - Natux. sticcts the best and strongest plants by making it diffoult for the weath onts to live. Those plants dati arvive in the struget for existence are very apt k be what we call wetds. But man wants wheat, batey, rys, griass, etc., and he helps these useful plant. fo grow by planting and culticating them and by killing off the weeds. Moreover, the gardener sares the seods of the strongest and best plants and sows them, bui not the seeds of the poorer sort. The next yeat he again subcto and nows the best seeds, and so on. Every phant inherits something from the seed which was its parent. So, fanally, the ardenter impores the phants he selects. Mis wheat is improved so ns to give the greatest product of grain; his grasses to give the most hay ; his apples to be the largest and best flavored; his foweres to be the largest, of the brightest colors and of the liuest arloxs. He heins Natue to form the very sarieties that he wants.

Varieties of animals are produced by the same kind of selection. A good trotting horse is the sou of a long line of trotting horses. A good milch cow is the descendant of many generations of good milkers. In crey gencration man selected the best cows. The others were killed, perhaps, for beef.

Some of the U'ses of Plants:

1. Mants Purify the Air so that Animats can Brathe 1\%.-Animals breathe in air and use its oxygen in their lungs and breathe out carbonic acid gas. This poisonous gas (which no animal can breathe and live) is being constantly poured into the air by the breathing of animals. Ilants breathe it in and use it for food, and they also breathecut oxygen. Plants keep the air pure for animals to breathe.
II. Pithos Make All thi' Food that Animals Lize I'fon.-..S.Some animals eat plants only (cows, sheep, 1 abbits, etc.). Without plants they could not live. Siome animals feed upon smaller animats (lions and tigers do this). Some animals live on animal food and on plant food at the same time (men do this, for instance; they eat meat and vegetables and grain). Without plants there could be no animal life on the earth. Plants conld live if there were no animals, but no animals could live if there were no plants.
III. Plants Furnish Clothing for Men. - Cotton and linen are made directly from plants; silk is spun by the silkworm that feeds on leaves; wool comes from sheep who are kept alive by grass.
IV. Plants Supply all the Fucl in the World. - Firewood and charcoal are made from trees. All the coal in the world is made from trees and plants of longr past ages.
V. Plants Ciite lis the Artifitial Light that Min L'sc.--Gas for luming is made from coal-fossil plants; herosene is coaldil; elestric lighting is done hy dymmon that are usually tun by stam engines (a few dyatmos are run by water-power. but even here, their lampe have carbons (coal) fon making the light)
2. 1ll Stean-engines (ret Their Enersy finm Plants. - The coal, or woot, or petroleum used as fuel hy stean rogines is the product of plants, so that everything in the world that is made by a stram-engine, or drwen hy a steam-engine, depends directly upon plants. Cotton cleth, for instance, is woren by steam-driven machiners, and it is carried from Boston to San Franciso and from San Francisco tn Manila by locomotives and stcam-ships.

All the Life in the lionle, Whrn, Döends Upon Plonts.-But p' nts cannot grow without sunshine, so that, finally, we may say that all the life on the earth and in the solar system depends upon the sun. When the sun stops shining all the solar system will die.

Arbor-Day.- Americans, especially in the farWest, have learned the value of trees and in many
states there is a holiday in the spring on which school-children and others plant trees in places whre they are needed. Millions of trees are now growing on land that was once trecces.

Number of P/ants. -- There are at least 125.000 thozon mpecies of seed-bearing phants. We do not yet knowithalf the plants of . Atrin.t. Somsis America and China.

Spricts.-Wach kind of plant forms a species The white oaks torm one species, the red oak: another, and som.

Irames of Species. - Siace Limans, the fathen - modern botany, published his book on the species of plants (Spraie Plantaram) in 5753 , 1 ll species are known by two Latim names. Thus the white wak is whited Gucrous (oak) altu (white. Wurrous is the name for all the oaks, whla is the particular name for the white species. (We say witu alia just as one might say "Smith -Jnhn.")

Oak Tracs.-. To show you how ditacrent species in the same family differ and how they resernble each wher some of the oaks and some of the conebearing trees (pine trees, etc.) are here described. A complete botany would give desciptions like these for every known species of tree and shrub, and plant and herb.

Cone-Bearing Trect-The Whits Pine is a lurge forest tree much used for lumber. Its leaves are long and soft, light green, arranged in groups of five. The I'itch Pine is a medium-sized tree. Its leaves are arranged in threes.

Fing. 258. The
aconn of thes White-()ak

Fig. 259. The aworn of the Red()ak.

Fig. 2(\%. "The acorn of the BlackOak.

Fsu. 261. The acorn of the Bur Oak

Fig. 263. The acorn of the Swamp Wbite-Oak.

Fig. 262. The acorn of the Chestnut-Oak.

Fig. 264. The acorn of the Scarlet-Oak.

Frg. 265. Shoot of White Jinte one-third as large as life. From the tip of the branch to A is the last season's growth; from A to B it is two years old; from B to C it is threc years old.

Fig. 266. The Pitch Pine. An old open cone is shown on the left hand side of the picture.

Fig. 267. The cone ind foliage us the Black Spruce.

Fig. 268.
The cone of the Norway Spruce, a common evergreen in the United States.

Fix: 2tw The cone and foliage of the 1 Itmberk.

Fig. 270. The cone and foliage of the Arbor-vitz (used in evergreen hedges),

Mate a (ollection of Trieql Pants.--Plants can he preserved by dryiner and pressing them between botins papx cut into sherts i $2 \mathrm{x} \times \mathrm{I} 8$ inches. For ench sp . tes there shouid be at least one specimen of the sum, foliare, flomer, root and fruit, properly and neaty labeled. deter the plants are thoroughly dry they can be fastened faper) to strong white withor, bipe.

Fig. 27x. The Chrinmas Fern, which remains green all winter.

Fig. 27:. The underside of the leaves of the Christhas Fern are rovered with little brown spots. Each of these spots (shown maguified at a) is covered with a little shield (b) and contains. fine brown dust. From this dast new ferns will grow. It is not a seed, because it did not cone from a flower.

Pat Only Ont Species on a Shect. -The label of each sheet should give: The name of the collector; the place where the plant was found; the date when found; remarks as to the height, color, etc., of the plant, the nature of the soil, etc., and finally the English and Latin name of the plant. Consult any large illustrated dictionary or ency lopadia, or work on botany, for help in finding the names; or ask some one who knows.

Ferns, Mosses, . Mushrooms.-All the plants that we have so far studied bear flower and produce seeds. Their seeds, in turn, produc new plants. There in another kind of plants (ferns. mosses and mushooms) that do not nower and have mo seedn

There is not room in this little look to say more about this clase cot plants, or to say anything about fossld plants or bus. teria.

BOOK VIII: THE HUMAN BODY.

Physiology is the science that teaches us the uses of all the parto of the body of an animal and explains the ways in which the? do their work. This book will describe the uses of the parts of the human body, and there is only room to describe the most important parts.

Ana'tomy describes the form and ase of the bones, tissues, muscles, et .

IIysicnc (pronounced hi', en) cells how the body may be kept healthy.

[^5]Man is a Verter rate Animal.-Human beings are zeriebrates, that is animals with backbones. The vertebrate animals are man, beasts, birds, reptiles and fishes.

Fio. 273. Skeletons of a man and of a gorlla. Theyare alike, bone for bone.

- The highest classes of vertebraté animals are men, monkeys and four-footed beasts. They are called Mammalia because their young are suckled at the breast (Mamma is the Latin for breast). All the mammals have red warm blood.

The Ifuman Skeleton seen sidewise (see Fig. 274).
$N a .:=$ the bones of the Nose,
Fr. \rightarrow the Frontal bone,
Pa. -: the Pari'etal bones,
Oc. the Oecip'ital bone,

These bones are in the Skult.

Mrn. = the Man'dible (lower jaw).
St. $=$ the Sterium (hreast-bone),
R. $=$ the Ribs,
R^{\prime} : $=$ the Car'tilages of the ribs.
These form the cavity of the Thoras.
$S .=$ the Sa'crum.
Cx. $=$ the Coccyx.

Scpint the Sca'pula (shoulder-hlade).
$C t i=$ the Cla'vicle (collar-bone).
H. = the In'merus (upper arm bone),
Ra.- the Ra^{\prime} dius lower arm bone',
U. ... the Ul'na (lower am bone),
$M c_{c}=$ the Metacar'pus (hand bone),
D. $=$ the Digits (fingers),

Il. $=$: the llium,
$P h .=$ the Pubis,
$+I_{s}=$ the Ischium.
These, together, form the Mip-Bonk.
$\boldsymbol{F}_{*}=$ the Femur (upper leg bone) (thigh bone),
Tb. $=$ the Tibia (lower leg bonef,
Fb. $=$ the Fibula (lower leg bone),
T. $=$ the Tarsus (ankle bones),

Mt. = the Metatarsus (foot bones),
D. $=$ the Digits (toes).

These afie in.m the Leg and in the Foor.

The names are Latiri names, because cally scientific booke were written in' Latin.

Fio. 275. The plan of the hamin bods. If a dead hody were to be trozen and then (all 111 wo dow: the midne it would thow somowhat as in the picture The hiochest parts of the picture stand for bones N^{\prime} is the avity of the shill in which the b+ain lies. The brain is comected with the spinal-marrow or spineld roved (N) in the hollow part of the backbone (e's) The brain and spinal cord fill up a space that is ralled the dorsal cazity (dorsal means back). In front of the backbone is the zeraidid cavery (rentral means stomarh) i is the cavity of the nose; o, the cavity of the wouth : l is the $/ n n$ ges (comnected with the month by the windfipe $1: /$ is the huert, f is the stomor h; the tube leading from the mouth to the alomach is the gullet; the tube from the stomach to the lower end of the body is the intesitine; A is a kidsey; d is a purtition called the diaphrargn.

The Human Rody is Built on a Plan.- The - atems and branches of a tree are built on a plan; and finst in the same way the bodies of men and
animals are built on a plan. All vertebrate animals have a backbone and contain two main cavites-the

Fig. 276. The chest (thorax) and the ribs. $1,2,3,4,5,6,7$, $8,9,10,11,12$ arc the ribs, s is the breast-bone (sfernum); c is the collar-bone (clavicle). You can feel on your own body where these bones are. Inside them are the lungs l (on both sides of your body-a Hght ling and a left lung); and also the heart (a) enclosed in abag called the pericaraium (peric. in the picture). Breathe deéply and you will know whese your lungs are. Put your hand on the upper left side of your thest and you will feel your heart beat,
dormal and the ventral cavities (NN^{\prime} is the dorsal, (b, c) is the ventral cavity in Fig. 275). All mammals have the ventral cavity diviled into two parts, the ches ((b) and the oridonen (c) by a diaphragot or partition (d).

Fig. 27, The buns walls of the chest (thorax) and part ot the buktone (ab). if the beastbone (sternum). The ribs are joined to tle breast bone by cartilages as at d.

The chest or therax (b in Fig* 245) contains the heart (k) and lungs (l) and the windpipe that connects the mouth and nose with the lungs. The breath goes through the windpipe,' or trachea. .
${ }^{1}$ The pupil should point out the different marts yf the pieture with a put.

The abdome'l contains the stomach (which is connected with the minuth by the gullet), liver, intestines (or bowels), etc.

Fig. 278 . The contents of the lower part of the ventral cavity -the aldomen.

Put your finger at the bottom of your neck and move it downwards, feeling for bones. When you feel no more bones you have reached the botiom of the chest (or thorax). Below that is the $a b^{\prime}$ domen. The food we eat passes through the gullet to the stomach, is there digested, and the useless remainder is got rid of through the intestine.

Organs of the Human Body.-The organs of the body are its separate parts that do special kinds of work. The heart is the organ that pumps blood through the body; the lung is the organ that breathes; the stomach is tife organ that digests food; the ear is the organ by which we hear, and so on.

Fig. 279 The human body opened from the front so as to show the contents of the upper part of the ventral cavity. The windpipe comes down from the mouth to the lunge, which lie on bolh sides, of the body. The heart is shown like a bag near the center. The upper part of the ventral cavity is separated from the lower part by the diaphragm, which is a stout membrane, or skin.

What the Body is Madc Of.-The outside of the body is covered with skin. If the skin were taken off we should find fat below it. .Under the fat, in the ball of the thumb, for instance, we should find
red llesh, like the lish part of beef. This red Alesb is moli: The wetriton of hard bones (-ee Fir. - 7.1) holds the body together and keeps it upight. Where the ends of joints come together, as in the fingers, for instance, we should find grintle, on cartilage. Besides all these thingn where are worms kinds of tissues-atringy networks of fibers.
(omme lit: disue is tongh and binds the different part of the body together: musch /isum is tough and strong and makes the muscles: rartilugre tissuc moken the grostle: hony tisur is stiffer and makes the bones. Saliot, or spitth, is in the mouth, blowd in the arterist and weins, elte.
(Momistry of the Rody. - If the trunk of at tate We buacd part goes off in gace and purt wadins as ashes. If a human body be hamed pat gots off as gas and part remaith, as she ash. Chemists have famined all the vobatanes sat the hum body and have found that it princible roments are Carbut (O), Itydroget: (H), Oxyen (O), Nitugen (N) . Suphur (Si. Lime (Ca). These are combined into themeal compounds. Much of the body (of the bicurd. for instance) consists of water (OH_{2}) : a grood part of the buncs is lime (Ca), etc.

The IIuman Skeloton: Rones. -. A very young baby has a skeleton but its bones are soft like gristle. As it gets older the bones grow to be stiffer and stronger. Between the joints cartilage is found, and the bones are joined together by connective tissuc. There are 206 different bones in
the human skeleton. The most important are named in Fig. 274.

The pupid should turn is thes page and point out, with a pin. on the picture, the principal bones of the budy.
(artilas.--The end of your nose is cartlage and can be bem. It is clastic. The upper part is bone and cannot be bent. (Try it.)

Fig. 2 \&ic. Bandle of onnctive tissur ach as bind the skin 'o the body. The thanter that bind the bones towether and those bet veen the mancles are of pretty much the some hird.

Cinnective Tounti. -If you watch the mok cut up a piece of suct you will see all through the mass a lot of tough strong fibers. She takes it out because it will not melt in cooking. Connective tissue in the body sometines forms ligaments to bind the bones together, sometimes membranes (a kind af skin) that wraps and supports different parts,

Fig. 281. Side view (A) and back view (B) of a man's backbone. He has seven vertebre in his neck ($C_{1,2,3,4,5,6,7 \text {) ; } ; ~ ; ~}^{\text {b }}$, twelve in his back ($D_{1,2}, 3,4,5,6,7,8,9,10,11,12$); five in his loins $(L, 1,2,3,4,5) ; S$ is the sacrum, C, the coccyx (like the beginning of a tail!. Notice how each piece in the back view (B) matches a piece in the side view (A). You can feel the different pieces in your own body.
(p. 296)

The Backbunc (vertebral column).

Figure 281 shows the way the bones stand in a human backbonc. Between each pair of vertebra there is a little elastic cushion of gristle. If there

Fxg. 282. The way the 24 ribs are joined to the back bone. The bony ends of 20 ribs anc joined to the breastbone by cartilages like gristle.
were no gristle, if your backbone were stiff, you could not bend your body at all. Throughout the column runs the spinal cord, like the marrow in a bone, and it joins on to the bottom part of the brain ${ }^{\circ}$ in the skull.

Fig. 283. A sitde vew of a homan skull. f is the fiontal bone: p, the baritefal trone, o, the arcr'fitai bons: au is the opening to the ear ; re is the place where the must kes of the lower jaw are fasteneri. The crinkled linse bet wet the bonew of the upper sknll arc called suturps. They are dovetniled so as to he strong Carpenters make the ends of buedu drawers in the same way for the same reason.

The skull is shaped like a dome so as to be strong to protect the brain. Try to crush an eggshell between your fingers. Although it is so thin and brittle, its dome-like shape makes it strong. The brain is the most delicate part of an animal's budy. If it is injured, its mind will not work. And that is the reason why it is a great advantage to any animal to have its brain well protected.

A bone in the human body is covered closely with a kind of skin or tissue. The tissue or cover-

Fic:. 284 . How the brain ($c c$) is protected by the skull; and how it is joined to the spinal cord (N). Notice how far up into the head the back bone goes to oupport it:
ing is full of blood, and this blood feeds the bone and keeps it alive. If, by an accident, the covering is stripped off the bone it will not grow any more.

The Soft Bones of Children are Easily Bent out of Shape. - The bones of babies are like gristle; the bones of children are much scfter than those of grown-up people. It is therefore important that
children should be taught to stand erect, to walk properly, to sit correctly, and that they should not wear too tight-fitting clothes or shbes.

A very young child that is allowed to walk before its legs are strong enough may become bow-leggea; aschool-rhild that sits on a bench so high that its feet cannot touch the foor may have the bones of the upper leg permanently curmd. Whldren who loll at their deshs may get a bad curve to their bickbones ; children who wear tight shoes will get crooked feet. A girl that wears stays that are too tight comprenses the lower ribs wo that there is not room cnough for heaithy organs and thry will become more unhealthy as she grows older.

Fig. 285. Front view of the bones of the hips. The lower end of the backbone in at the top of the picture. Then comes a cushion of gristle marked disc, then the lowest of the vertebrae of the back ($5 \mathrm{~L} . \mathrm{l}^{7}$), then the sacrum ($\mathrm{a} a \mathrm{C}$) and the coccyx (cocc) (compare this picture with Fig. 281). The upper bone of the leg fits into the place marked acef-there is one such place for each leg. R is the person's right hand side, L, the teft hand, All these bones together make a ring which is called the pelvis,

Fif. 286. Front riew of a man's left leg (A) and left arm (B). Toke the arm finot ($B): c l$ in the collar-hone (clavicle); scap is the shoulder-blade (scapmbia); hum is the bone of the upper arm (humerus); rad and uln are the two bones of the lower armi (radius and unimet) ; (ar is the plite of eight bones of the writt (carpal bones): metac is the place of five bones of the hand (metatartat bones) : pht an the fir ger-bones (phalangen). Take the leg next (A): ina in this pitture is the same as the hipbone marked L in the last picture (compare the two), fom is the bone of the upper lig (yemar) ; fat is the kuee-ap (farclla) ; tib and fib ane the two bones of the lower keg (tibiu and fibulta): tar in the place of the seven bones of the arkic and heel (hersal bones); metat is the place of the five bones of the 1 wot (metatarsal bones); phl are the toebones (fhalanges).

You can easily disiover many of these bones in yourself by feeling your own arm and leg. (Try it.)

Fig. 287. The upper bone of the right arm as it is; and as it would look if sawed down the middle. The upper end of the humerus fits into the shoulder-blade (see Fig. 286). The lower end forms part of the elbow. The joints are oiled with a fluid like oil. The bone is hollow and the hollow is filled with marrow. Round this is the spongy bone b and c; and outside is the hard bone. At the ends are two pieces of gristle a, a. Split the bone of a chicken's leg and you will see how bones are built. (Try it.)

The Bones of the Arm, with the Biceps Muscle.

Fir, 28S. The bone of the am, with the hicepinmele. By compas ing this picture with lig. 286 you can see how the numele of your opper arm : sintened to the shoulder-blade by two trndons at (u). The lower end of the bireps muscle is fartened to the radius bone of the lower am at P. F is the elbow. By willing to doss, you ath make the biceps ancell up and shorten (the thin Smes Show ats outhe then) and thu tatie your hand to the place shown in the maddle of the pisture. Pat one hand on your biceps and ratse your lower arm ass in the pictures, and you can feel the biceps grow laser and shovten. Muscles move the hones they are fastened to when they horten. Museles shorten when you will that tioy shonid do so.

It is Worth While to Kecp Oul Bodies Healthy. -Children usually feel pretty well and think very little about good health or bad health. But if they will look around them they will see that the world is full of older people who are not well. Every one of those people is less strong, less useful, and less happy than he or sbe ought to be. How would you like to be ill and in pain for half of your life By eating the right kind of food in the right way,
by not eating the wrong kind of food at all, by not smoking tobacco and by not drinking alcoholic drinks, by standing, walking and sitting straight, by wearing the right kind of clothes and shoes, by kecping your body clean by baths, and strong by regular exercise, you can keep yourself healthy.

Fig. 289. The elbow-joint-separated. Projections on the bone of the upper arm (humerus) fit into cups at the upper ends of the two bones of the lower anm (ulna, rudius). The bones are joined by ligaments (two of them are shown cut apart in the picture). Hold your atm straight out and turn your lower arm round $s \circ$ that the back of your hand is first up, and then down.

If your body is healthy and your mind is healthy too, you will be able to live a useful and a happy life. This is worth while. Think about it.: At least half the misery in the world comes because
children have neglected the very simple laws of health during the years when their bodies were growing and developing. Begin now to form good habits which will keep you healthy and happy all your life.

Fig. 290. The bones of the right foot. Notice that the foot rests on two points; on the heel and on the ball of the foot. Between those points there is an arch (the instep) which is elastic. That is why you walk with a springy step. If there were no elastic arch you would feel a jar in your hrain' every time yon planted your foot in walling.

Moreover, if you will look about you, you will see that many older persons who seem, on the whole, healthy enough, are yet not very useful, not very successful, and on the whole not very happy. In very many cases they are less useful and less successful because in the struggle for life they are handicapped and hindered by a poor digestion, headaches, nervousness or something of the kind. Our opportunities for usefulness or success come unexpectedly and do.not wait upon our convenience. They come suddenly and do not wait "long. The man who is in good health can seize them as they fly. The man who has headaches, who is toofat,
or too tired, lets the fortunate moment pass. He does not succeed; he is not useful. Many battles have been lost because the Generals were not in perfectly good condition and health. They could not think quickly and correctly. Life is, in some ways, like a battle. The soldier who keeps his

Fig. 29x. The human foot is naturally like A or B in the picture. A narrow-toed shoe, of the shape of the outline in B, will cramp the toes as in C or D.
body and mind in good health is the one who succeeds. Healthy minds usually live in healthy bodies.

The Treth.--Babies begin to cut their milk-tceth when they are about six months old, and by their second year they have twenty teeth. The permane te tecth begga to grow when the child is six years old. They take the places of the milk-teeth. The
last teeth (four "wisdom-teeth") are cut at about twenty-two years. By that time a person is expected to know something. If a tooth of the second set is lost, by being broken, or decayed, no new tooth will come to take its place. Therefore, be carcful of your tecth.

Go to a dentist at least twice a year and have your teeth examined. Do not abuse them by cracking nuts with them, or by drinking very sour (acid) drinks, or by eating very hot foods. Brush your teeth twice daily with a moderately stiff brush using white castile soap and powdered chalk. Use a quill or a wooden toothpick trequently to remove particles of tood lying between the teeth. Never use metal toothpicks like needles, pins, etc.

Fig. 292. The left-hand cut (A) shows a tooth sliced in two up and down ; (B) shows the vame tooth sliced crosswise. • Both pictures are just three times ds large as life. In both pictures a. is the very hard enamel of the outside of the tooth, d is the hard dentine or bone, b is the space tilled by the $p x / p$. The puip is a soft, red, very sensitive core, full of blood and nerves; and is the part of the tooth that is most alive. Through its blood ${ }^{\text {anc }}$ rest. of the tooth is fed. (It is often called the sterse.).

Muscles.-The muscles of our body make it possible for us to move, to walk or to stand erect; for

Fig. 293. The outer muscles of the body. If the skin of a than were tianmparent you wobla see his muscles as in the picbus. Weneatl the mandes shown here there are hundreds of others. The picture shons only the outer layer. Compare this picture with the next one and trace out, with a pin, the muscles of the shin, the thigh, the abdomen, the back, the neck, the arm.
our heart to keep beating, for our lungs to breathe, for our stomachs to digest our food.

We breathe and our hearts beat whether we aill to have it so, or not. The muscles that do this sort of work are called insoluntary musches ; that is muscles that work independently of our wills). You cannot make your heart stop beating. (Try it.) You can hold your breath a long time, but not forever. (Try in.) W'e move our arms and legs by another kind of muscles which do their work when we will them to do it - voluntary muscles. You zwill to move your arm first; and then your arm moves.

When a gorilla-- whose skeleton is wry much like that of a man (sece Fis. 253) -is walking, he rests his tists on the ground and gues on all tours nearly all the time Aman wathe upricht and his two handsarefree Thusamath, even if youthink of him as an animal and nothine eise. has a great adwantage over any other animal. Man is the only "tool-using animal" partly because his two hands are tree to use the lools: partly, because his intelligance is sharp enough to invent the tools in the
 first place.

Fig. 294. A sketch to nhow where some of the most important muscles are: (1.) the muscles of the calf of the leg; (J.) the muscles of the back of the thigh : (III.) the muscles of the backbone (these kecp the body from falling forward) ; (i) the mus. cles of the front of the leg; (2) thone of the front of the thigh; (3) those of the abdomen ; $(4,5)$ those of the neck. When you are standing still all these muscles are at work to keep you up; right. The pull, the force, acts along each muscle in the direction of the arrows.

Tendons.-The middle of a muscle is usually a red soft swollen part (like the biceps of your upper arm-Fig. 288) connected by tendons-tough white cords - with the parts that are to be moved. You can easily find the tendons that bend your fingers by feeling for them on the inside of your wrist.

Muscles Can be Educated and Can Gel Habits. -A bahy has to leara to stand. Each muscle has to be taught. By and. by the muscles learn just how they must act and each muscle acquires a habit. After that the child can stand without thinking how standing is done. Swimming, bicycling, riding on horseback, have to be learned. The proper muscles have to acquire hobits. After that, 'we can swim or ride on bicycles without thinking. When you are first learning to ride a wheel your brain has to think every minute about what you are doing. After you have \downarrow earned, you can ride along and think about something else. All your muscles have acquired their habits, and your brain is free from responsibility. Your breathing is done, for instance, without any thought of yours.

Contraction of Muscles.-A muscle does its work by contracting - by getting shorter. If the biceps muscle in your upper arm were a stout rubber band that would get shorter whenever you said "Now" and longer when you said "Enough" such a rubber band would do the work that is wanted. A rubber band would not get tired, but muscles do
get tired in time. Then they must rest until enough new blood has been poured into them. They are like willing laborers; but every now and then a laborer must stop for food and for rest.

The Skin.--The skin is the tough outer covering of the whole body. It is like an India-rubber bag fitting loosely over the fat and muscles underneath. You can see that it is not tightly fixed to them by pinching up a fold of skin on the back of your hand and rollingittoand fro. Directlyunderneath the skin is a layer of fat, and under the fat are the muscles.

The Dermis and Eprdermis.--The skin is made in two layers very close together. The outer layer, the one that you see, is the cpidermis (sometimes called the culicle). The inner layer is the dermis or the true skin. The outer skin is thin, horny, almost transparent, without blood-vessels or nerves, and is a protection to the sensitive skin underneath. If there were no outer layer to protect the inner skin, the whole body would feel like the "raw" skin at the bottom of a blister.

You can run a needle under the skin on the palm of your* hand without hurting yourself, or without bringing blood, if you are careful not to go too deep (try it). The moment the needle enters the true skin underneath it touches a little vein, and blood flows; and it touches a herve and you feel pain. Nerves are connected with the brain and telegraph a message there the moment they are touched. The dermis is alive and is all the while fed by the blood; the outer horny skin is, in great part, dead, and is all the while being worn off. After a hot bath a great deal of the outer skin can be rubbed oft with a towel. A sumburned nose loses its outer covering of skin which peols off. The same thing happens after scarlet fever or measles. The outer skini peels off..

Fig. 295. How a piece o skin would look if it whe sliced through and very much magnified.

The skin is about a tenth of an inch thick (of different thicknesses in different parts of the body). On the outside of it is cuticle or horny skin-Ec in the picture. This layer is dead and is continually being worn away. Underneath it is a layer, Em, of live cells from which new outer skin is continually being buil
up. All the reat is the dernis-otrue shim. It is full of veing carrying blood--t, in she picture (trace out the veins in the picture with a pin). It is ful' of nerves, too-nn in the picture. Traces oat the contse of thin tuerve and vor see it branches into a little coil t c. It is by little coils like this, joined to nerves, that you are able to feel when you touth anything; $g l$ is one of the swewfyland in your skin and it is connected with the outer parts hy a tuhe, da (tace it out)

The Organs of Touch. - Thruaghout the skin there are little coils joimd to the nerves (k, it the last picture). When the shom above one of these is tonched the neme twographe to the brain "I am tonched." It ron take a pemil ny you hind it totuches a longe row of ruch coils Each one of the row telerraphes to the brain and your brain (sombons) homs l'te shape of the pencil even when your ath de shut. (Try it.)

If you pross a motape stamp on your hand it touches a kot of ofthanamed this way:
each one of these coils tele- graphs to the brain "I am tonched,". and the ha ain (somehow) knows the shape of the thing that is touring. Not only does the brain know the shato in this way, but it learns something about the hom, diess. A copper cent feels differently from a round prece of cardboard of the same size (try it with your es; whst). A' warm cent feels differently from a conl one, toow The brain learns something about the tomporature in this way, also.

Some Parts of Your Rody are More Sencitite than Others.Take two lead pencils sharpened to dull ponts and hold them
close together, side by sidet Have one of your companions close his eyes and do you touch the back of his hand or the top of his tougue gently with both points at once. He will tell you that two things are touching him. Now touch him with both points on the back of his arm, or on his shoulder-blade. He will tell you that only one point is touching him. (Try this experiment and others of the same kind, using sometimes one point, sometimes two; and putting the points sometimes close together, sometimes an inch or more apart.) Some parts of the body have a great many sensitive spots on every square inch (the tongue, the cheeks, the hands) ; some have only a few (the backs of the arms, the shoulders, the feet). The more of the spots there are, the more sensitive the body is to touch.
. Sweat-glands.-Just as the leaf of a tree is full of pores, so the skin is full of little holes through which sweat, or perspiration, escapes. See Fig. 295, $g l$ and $d d$. There are about 3,000 such sweat-glands to every square inch of the palm of your hand and about two millions and a half $(2,500,000)$ in the whole body. Look at the palm of your hand with a common magnifying glass and you can see the holes at the ends of the sweat-gland tubes. The little tubes leading to thenglands are about $1 / 4 /$ of an inch long, so that in the whole body there are about ten miles of them.

The Chief Use of the Sweat-glands is to Keep the Body at the Right Temperature.-It is a fact that the temperature of the body of a healthy man is about 98° Fahrenheit, no matter whether he is in the cold arctic regions, or in the burning deserts of Arizona. If his temperature falls a few degrees he dies'; if it rises a few degrees he dies, The "wweat-glands regulate his temperature. When the
body is very cold there is almost no sweat; when it is very hot there is abundance of perspiration which collects in drops on the skin. There it evaporates into the air as (invisible) water-vapor and in evaporating it makes the body cooler. (All evaporation cools the air.) It is in damp weather, when the perspiration evaporates very slowly (because the air is already full of water-vapor) that you feel the hottest. Hot, dry weather is far less trying. If the whole body is kept clean by daily baths the sweat-glands will work well and will be healthy.

The Complewion.-Detp down in the little cells that make the dermis there are grains of coloring matter like a paint. In blonde persons there is only a little of it and we say they have pale faces. Brunettes have more, and we say their complexions are dark. Negroes have a great deal. When the skin is much exposed to sunlight more of this coloring matter is formed and the skin is "tanned," as we say. If the true skin is burned by a deep burn the coloring matter is all destroyed, no more grows and therefore scars, even on negroes, are white.

Blushing.-Sometimes there is a rush of. blood to the dermis underlying the cheeks that brings a blush. It is curions that our arms or shoulders do not blush. They are usually covered, and blushing there would not be a sign to others that we were ashamed or angry. Blushes come to the cheeks where they can be seen, just as flowers have gay petals in the places where they are of some use.

Fiuger-nails and toe-nails are made from the outer layer of the skin, but they are fed by the true
skin (dermis) at their roots. The claws of animals correspond to our finger and toe-nails.

Fig. 296. A slice of the skin-much magnified-showing the way hairs grow on the body: a is the onter layer of horny skin; d is the inner layer of skin. Two hairs are shown growing in two little sheaths. The oil that makes the hair glossy comes from two oil-glands (e) half way up the root of each hair. The roots of the hairm are close to nerves. Whan a hair is pulled out you feel a little pain. When anything touches the end of a hair you know it, just as a cat knows when anything touches the ends of her whiskers. (Try touching the hairs on the back of your hand.)

Hairs.-The bodies of many animals are covered with thick fur. Our bodies - except the palms of the hands and the soles of the feet - are covered with a scanty growth of fine hairs (look at the back of your hand) and long and thick hair grows on our heads.

Food and How it is Used in the Body. - The body is a machine for doing work, somewhat as the steam-engine is a machine for doing work. In the steam-engine we must have fuel that is burned and from the burning we get power. In the body we must have food that is oxidized (that is burned)
and from the food our bodies get power.' When a steam-engine gets out of order. it cannot mend itself, but our bodies can and do mend themselves

Frg. 297 The nomach and intentines. In the picture the stomach is sht ope., to shon th interion
${ }^{1}$ The work that 1 man's body does in folly external, partly internal. 'The external wohk can ine measured in toot-pounds (the energy requirel to lift one poind one foo is a foot-pound). A healthy man can do about $2,000,000$ foot-pounds of external
 high, litting a few pound at a time and kerping at it. His internal work kepp his heart beating, has lungs breathing, tris body at its temperature of 98° Fahr., etc., and amounts to about 5,000,000 foot-pounds daily. .
in many cases. For instance, if your arm is badly burned and loses its power, your blood will bring the food necessary to make it well and strong again.

Fig. 298. The stomach, the large intestine, the small intestine (seen from the front) : $s t$ is the stomach; Π, the small intestine; A col, $T \mathrm{col}, D \mathrm{col}$, the large intestine; verm is the appendix.

Food taken into the mouth is chewed and then swallowed. It goes through the gullet into the stomach. There it is dissolved by the gastric-juice and made into a soft mass. like very thick soup,
called chyme. This is mixed with bile from the liver, and with other fluids, and passes into the small intestine where it is turned into a cream-like liquid called chyle.

Now at last the frod is ready to be taken into the blood. The undigested and necless parts are passed along the bowels and finally ejected.

Fig. 299. The throat sliced down the middle : b is the gullet; l, the roof of the mouth; c, the windpipe: k, the tongue: is a little lid which shuts down over the windpipe when you swallow so that food cannot go down " the wrong way." Put your finm, gers on the Adam'supple of the throat. outside, and pretend to swallow. You can feel how the little lid closes the windpipe.

Digestion in the Mouth.-- If the food is well chewed there is a good supply of saliza (spittle) in the mouth. The mouth and gullet are lined with a soit red skin called the mucous membrane. (You can see part of it by standing in fiont of a mirror with your mouth wide open). The saliva moistens the food and gets it ready to be swallowed. You could not swallow a cracker-- which wonld be mere dust-unless it were tirst moistened.

The smell of food, or even the thought of it, maker the saliz'a flow. "It makes your mouth water," we say.

Food Passes Mozen the Gutht ither:ly.-It does not fall down a a brick talls down a chimney. The gullet is a small tube full of rings of muscle which seize the bits of food and move them along from ring to ring. Horses drink with their head. lower than their stomachs by this moans. The water they drink is made to flow up-hill.

Gastric Juice.-The moment inod enters the stomach gastric juice trickles out, somewhat as sweat on the skin, and begins to digest the food.

A Canadian hunter was accidentally shot so that the bullet left a hole from his abdomen into the stomach. His doctor was able to see exactly how digestion went on by experiments made through this wound.

After a time, sometimes one hour, sometimes as much as four hours, the chyme of the stomach begins to move into the small intestine. Usually the stomach is entirely emptied about three or four hours after a meal.

Digestion in the Stomach.

Fik. 3 ore. The stownels sliced in two so as to show: a, is lower end of the gullet : d the opening into the mall intestine: , the tube the urh which iite come from the live:. Thentomach is large enough to hold ahout four pint It walls ate stout and muscular. laside it is corered aths a nue outs memterane tuil of thensands of amall "hamd then gice out grastric juice.

Digestion in the Small Intestine. -The small intestine is coiled up in folds which, if extended, would be about 20 feet long. (sere Fig. 298.) It take, up the chyme and passes it along by its rings of muscle. At the same time the chyme is changed into chyle - which is very nutritious and looks like cream. As the chyle passes along it is absorbed, sucked up, by thousands of small tubes. Froms some of these tubes the chyle goes into the blood at once. Other tubes take part of it, mix it with lymph and pour it into a large blood-vessel, ready for use in making new blood.

Digestion.-Water taken into the mouth is ready to mix with the blood at once. Things like sugar and salt are ready to mix with the blood as soon as they are dissolved. Starchy foods, the lean part of meat, etc., have to be changed by the gastric juice into chyme and then again changed into chyle, before they are fit for food.

Alsorption. - Some of the nutritive food is absorbed by the blood-vessels of the stomach and thus passes into the blood. Much more of it is sucked up from the blood-vessels of the small intestine; still more by its tymph-zesscls. All the useful parts of the food finally get into t'c blood, are carried by the blood to the heart, and from the heart this rich blood is pumped all through the body. New blood is continually being made in this way, and old blood is continually being made richer. All parts of the body are continually fed with blood. Good blood and plenty of it is what keeps us alive and well.

The Circrilation of the Blood.-The blood circulates. It moves through the body in every direction. The heart is a hollow muscle filled with blood. It beats, that is it contracts like the bulb of a syringe, and squeezes its blood outwards into the arteries. The arteries go all through the body. You cannot put the point of a fine needle into your flesh anywhere without touching an artery and drawing blood. From the fine ends of the arteries the blood goes into still finer tubes called the capil-
lary (hair-like) tubes. The flesh, everywhere, is nourished and fed by arterial blood (it is bright scarlet in color). Other capillaries are joined on to the zeins. The arterinl blood from which the rich nourishment has been taken is sucked in by

Fig. 301. The arteries (a, a) and veins (v, v) of the web between the toes of a frog, much magnified. The arrows ($\mathbf{m}-\boldsymbol{-}$) show which way the blood runs. All the smaller lines stand for the capillaries.
the capillaries, passed on to the veins (where it becomes dark ;-d) and back to the heart again. In its course the blood passes through the lungs, too. Here it sucks in the oxygen gas of the air we have breathed. This oxygen make's the blood rich and nourishing again (and scarlet in color), and so the circulation goes on as long as you live.
Scarlet blood goes through the arteries and nourishes all parts of the body. After it has lost its oxygen it is of no use as food and must return to the lungs and to the heart to be made rich again.

There are so many thousand arteries, veins and capillaries that you whole body is made up of countless little islands, where no blood is, surrounded by risers of blood Howing past them and making them tich and tertile (the ateries) or clac taking avay from them food that has been once used and is now nseless (the veins).

The Heart.-(See Fig. 303.)

The Course of the Flow of Blood.-The blood starts from the left ventricle and flows into a large artery which soon divides into branches that lead all over the body. These branchen end in the fine capillaries and when the rich blood has reached them it has done its work. It has brought nourishment to every part of the body. It has lost its oxygen and changed in color from scarlet to dull red. The fine network of veins collects the blood from the capillaries and draws it through larger :"it larger vein branches and finally ponrs it into the right auribly From there it is pumped into the right we $: \cdot$, le and from there it goes to the lungs. Here it is again made, ich hy the oxygen of the air and is returned to the left auricle. From there it flows to the left ventricle and begins its circulation once more, and so on as long as you are alive. The blood tlows through the whole body ; this is the systemic circulation, It also flows through the lungs; this is the pulmonary circulation.

Experiment.- Bare your arns to abos: the elbow and let it hang down tor half a minute. Its veins will be filled with blood. Now tee a bandage tight just above the elbuw. The blood cannot get back to the heart fast enough and the veins will swell so that you can casily see whels they are. "Iry it-but do not keep the baudage on tun long.)

Fige joi. The human hatat, seen fom the front. Yous beat is almat as hage a your fist. see Fig. 2\%, page 203, which shows hon it liwo under the ib .

Fig. 303 The hman beart *liced upen litconto ninow its four eacities: (is right aurick; (2) it, h : ventricle; (3) leti anti, ie; (4) ieft ventricle. The blood flows in the direcinn of the arown berause the value of the heart (like trapdoors that will only open in one , .y) will unt allow it to How in any other directions.

Beating of the Heart; the Pulse. - The heart bcats about 70 times a minute. Put your fingers on your wrist and count the number of beats in a minute.

Fig: 304. The plan of the arteries and veins of the front part of the body. The arteries are black; the veins are drawn in dotted lines. (Trace out the arteries and veins with a pin for a pointer.) In the arteries the blood flows about 16 inches every second, and in the larger veins about 4 inches.

Fig. 305. An experiment to show
 the beating of the heart (the pulse) to a class. Bare the wrist and press a bit of looking-glass about half an inch square upon the wrist and hold it there steadily with one finger. Every time the pulse beats the ralrsor will move slightly. Let the direct rays of the sun fall on the mirror and be reflected to make a spot of light on the ceiling or wall. The motion of this spot will show the beat of the puise, much magnified. (The teacher should show the scholars how to make this instructive experiment.)

The Blood.-The hlood in a man's body weighs about twelve pounds. Blood, to the eye, looks like a red liquid. When it is seen through a microscope we find it to be a colorless liquid (the blood-plasma) in which float thousands of little solid particles. These are the blood-corfuscles. Mest of them are red, hut many are white.

Blood ('orpuscles.-

Fris. 3 o6. Blood-corpuscles. (A) The picture between the letters A and A is not very much magnified. It shows the red corpuscles lying in strings like piles of copper cents, and two white corpuscles a, a. B shows two red corpuscles, much magnified, seen flatwise. C is a red corpuscle seen edgewise. D is, a string of red corpuscles.

The red corpuscles are about sotr of an inch in dameter and about ritof of an inch thick. Ten millions of them will hie on a square inch, and the body is tull of titem. The red corpuccles carry oxygen with them to wll parts of the bady, thd twit it alize. The white corpuncle's of the blood are in form and in character like the single-celled animals called Amobap. When they meet a particle of blood that has no right to be there, they flow around it and absorb it, just as the Amoxba flows around and abmorbe i', oxvn ood. As long an the red corpuscles of the blond are latathy they are not atacked, but the moment a red corpuscle is distaned, it is treated like an rnemy. Bateriat (vegetable germs of sonte denctam mite robes, socithed) are devoured by the white corpuccles, and the howly protected trom harm. During an illnese due to poisoning of the blood by microbes-malaria, fo: instance-there ate cerntless battles fertween the hontile microbes and the white corpusples, It the latter wha the fight the patient recovers. If the white corpuscles are defeated the pationt diem.

Withwet liood We Cannot Lezer - If an artery is cull by an accurnt, the man will bleed to ceath. If biood from another peraon, or from a dog, is pumped into t, is viriss he can be re-vived-made to live again.

Blood yethit, nourishing food trum digested tood. It getn a:ygen from the air we breath. (Air 18 a mixture of oxygen and nituogn gas.) As the biood pasken through the lungs it gives out rarbonic aud gas and this is breathed out by the lungs d at each breath.

We Speak br Air Forcel Through the Glottis, and different sounds are heard according as the opening of the glottis is large or narrow. By much practice the muscles have learned just how wide to open the glottis to make the sound of A , or B , etc. Babies learning to speak have to think about the words they are going to say. We have said them so often that our muscles have learned their habits
and work almost like machines, without much thinking from us.

The Air- Passages....

Fri. 307. 'The heat slew downhand, mealy through the mid-
 carrien air to the lung- The wirfandges are the fkarvnx (g, f, e) and the kann (d) (the pati of the same tube below e). The "Adam's apple" is at $d: e$ in the efighotti, a little lid or trap-door, which closes the windpipe when tood is swallowed but leaves it open when you are sponking: d is a box of gristle in which there is a slit called the glottis. The air passes through this whe when we speak, and we can make the slit wide or narrow, as we choone. When we breathe it is wide open. When, we are speaking it is sometimes wide. sometimes narrow

Take a hollow tube, like a piece of a bamboo fishing rod, about a foot long and cut the top of it sloping like a Λ. Wrap a piece of thin sheet rubber (such as dentists use) round the top so as to leave a narrow slit at the very top of the Λ, to atand for the opening of the glottis. Tie the rubber on with a string, Now blow through the loner end of the tuhe and you will get a sound. Touch the sibrating rubber at different points with the sharpend of a pencil and you will get difterent sounds. (Ty it.)

Fig. 3u8. Back view of the winduipe and langs. In the picture the backbone is not shown. M in the mouth (scen from behind, as if the body were transparent); $(i l$ is the glottis (part of the windpipe) ; T ' is the windpipe; $L L L$ is the lett lang ; $R L$ is the right lung; Rr (on hoth sides) are the brom hial tubes (the ends of the windpipe); H is the heart. (Point these parts out with a pin for a pointer.)

Breathing (Respiration).-We breathe air (which is a mixture of oxygen' gas and nitrogen gas). It goes into the lungs through the bronchiat
tubes and mixes with the blond which takes out all the oxygen it needs. The used-up matters in the blood (mostly carbon) cornhine with some of the - supply of oxygen and make carbonic acid gas. This poisonous gas we breathe out about 18 or 20 times a minute (oftener for children).

Firi. .309 . The lunge and the buanches of the bronchial tubes.
Experiment. - Tahe a wery umall piece of quick lime and drop it into a little water at the boltom of a good-sized jar. It will bubble fiercely and beconce hot (the water is combining with the limes. When it is cool filter a clear solution-lime-water-into a tumbler. Now let one of the pupils breathe into the limewater through a clean glass tube. The water will become turbid. Why? Because the carbonic acid gas of the breath has comblned an mically with the lime to form carbonate of lime which is insuinble in water. Let the water settle. Pour of the surplus, liquid, leaving only the semi-solid mass. Add vinegar. It will displace the carbonic acid gas which will go off in bubbles.

Movements of the Chest in Breathing.-

 $A b$ the muscular wallo of the abdomens. The shest, al wemeh, breasthone (St) and ity move when tou breathe.

Plenty of Fresh Air is Necessary to Lifc. - If there is not enough fresh air, the blood will not get enough oxygen and the body will starve. Many headaches come from lack of fresh air. Go out of doors and they will disappear.

Good ventilation is supplying plenty of air to the rooms in which we live-study-rooms, living-rooms, sleeping-rooms. Always have fresh air and plenty
of it, and arrange the doors and windows so as aot to make "draughts" of air blowing directly on yorn.

Snewang and Coughong.-Draw a deep breath and fill the -lungs, and then force ont the ar though you nose. (Try it.) Now let rome one tichle dee inche or yom nostril with the fine
 help it. Filling the hangs tull amd thentonsing the wir ihough
 is forcing the ai out through th: mouth.

Breathe Through hur Vose, Fut Through Your Mouth.-..Kecp! an swnth shut when yn breathe, even when rou ate ruming. Dir that gats to the lungs should be warmed by pasing through the passages of the nome, tent taken in ducetly thomeh the month, in wheh con it i: likely to the too cold. The bathe hars insibe the notnl at as straners, and cand daw that ought wet to get into the lange.

The aroous swtom consist of the Man, the Spinal cord (or marrow) and aset wi mores spreading all over the body.

The brain is a complicated mass of very sensitive matter that fills the upper part of the :"knll. It weighs about 4 pounds. (A butcher will show you a sheer's brain if yon ask him.) It has three main parts: the recthru', or large brain (in this part all the neost important things we do are decided); the cerchellum, or lesser hrain (this part arranges our motions so that our muscles work together in harmony). If this part is removed from a bird's skull it can still see, hear, eat and fly -but it cannot fly
straight nor balance itself) ; the medul'la (this part tells the lungs when to breathe, the heart when to beat, the mouth when to swallow or to cough, etc. It manages the involuntary musclis (see page 309).

Fig. 3xi. Side view of the brain and upper part of the spinal cord. $C C C$, is the furrowed cerf'brum or larger brain; $C h$, the cer'pbel'lum or lesser brain; M, Ob , the medulla oblongrta, a complex nerve-center; N, the sfinal cord and its nerves.

The brain - somehow, no one knows exactly how - remembers whatyou have seen and hegrd,

knows what you are seeing and hearing now, deciles what is best to do now, and sends out orders through the neroes for the muscles to do it - and they obey.

The brain is connected with the spina! marrow, and nerves. branch oft in every direction (very many more than are drawn in the picture).

The nerves are fine hollow tubes fill ol with something like clear jelly. They sum all wey the body as telegraph wires, run from a entral oftice.

The Verzes (iury Messags To and Fronthe Rrain.-The brain acts ds if it were a contal telegraph station. Some nerses, like telegraph wires, cariy messages inzards to the brain, and others carry mesonges otheards from the brain. Suppose some one pricks your finger with a pin. The pin twaches a nerve. This nerve carrics a me"s.o.ge to the brain and says "I an whehed." The brain sends a message to the muscle of your finger along another nerve and says "more away." The muscle shortens and the finger moves away from the pin. All the most important bodily action: of men and animals are decided in this way.

This can be proved. We know exactly which nerve takes the message from the finger to the brain, and which nerve brings the order out. We can cut them with a knife, if we choose.

Suppose we cut the top nerve, and then pricl. the finger. The finger cannot aend any mestage to the brain because its
nerve is cut. The brain will know nothing about the pin-pick because it hat weived no message. If wall send out no order. Or, suppose we leave the top nerve whole, and cut the lower one. Now prift the finger. The finges will send a message to the hrain and say "I am tounh d" 'Ibre bram vill hmon it. It will
 the mosonder ramon gr, that way.

Furalysi - All the merve that are in the leg unite neal the hip int:- dhut on latu dage cords which join the apinal cord noar it- herer end. fr abee me: ven are accidentally brohen at the ankte' the twot is furdyred, it cannon feel or move. But the rest of the ley is all right. If thess ne:nm are liroken at the knee, the lowe heg in paravod: the upper leg can still feel and move ff the we bookenat the, hp, the whole leg is paraly ed. It the werson or h: ate not ingured, but the spinal cord is wounded. all the body below the wound is paralyend,

 then Athats and fowtor wittey, it it in cit betwe thmehn and Chicago, then mo mesages can be ent to ans prat of the lme beyond thi hereth.

 nerve intwo. H, nil such case the destors have noticed just what has bern ,hweriberl.

If the whole erebrum is cut ont of an animal, a frug for instance, all it intelligence and will goce It remains alive, but it is a mete machine that breathes, whose heart leats, etc. It can no longer choose what it like to do. If the froge's legs are touche i , moves them (not memane it wants do do sis, but becaust it cantoot help if- just as you caturt help sheczing when the insik of vour nose is tichled).

Sueh movemeats art made when mesmages are sent out from the nerve-centers in the spinal-cond. which contiol the beating. of the hewt, breathing, coughing, wereing and all artions that

Fig. 313. A shetrh to show how one set of nerven takes messages to certain centers in the brain, and how another set of nerves carries onders from these brain-centers to the mouth, the hand, etc. V (in the back part of the brain) is the center for seeing ; A (connected with ear) is the center for hearing; E is the center for speaking; W is the center for moving the muscies of the hand in writing. If a sound comes to the ear a message is sent $i n$ to A. If a picture is seen by the cye a meisage is sent in to V. If you wish to speak a message in sent out from E to the lips. If you wish to write a message is sent out from \mathcal{W} to the hand. It is as if the brain were the central telegraph office in which there are many operators at V, H^{*}, A, E, etc. When one of them receives a message coming in he tells the others what messages to send out. The messages are sent out and the hand or the leg gr the lips obey the messages they receive. The messages come $i n$ along the nerves s, s^{\prime}; they go out along the nerves m, m^{\prime}.
must be done whether you will or no-reflex-actions as they are called. The involuntary muscles are controlled by centers in the spinal-cord.

Reffex-Action.-Experiment: Sit on a chair and cross your right leg over your left one. Now take a book and tap your -right leg with it gently, just below the knee-cap. A short time after the tap your right leg will hick out, whether you will to do so or not. A set of nerves of the knee takes a message to the spinal cord (not to the brain), "I am struck." The spinal cord telegraphs back, "Kick then." The spinal-cord does all the work. The time between the tap on the knee and the kick is taken up by the two messages travelling two ways and by the action of the muscles of the leg. (Try it.)

Nerve (ienters.- The nerve centers that control such movements as snerging, etc., are in the spinal cord. Other parts of the brain are centers for seeing, centers for hearing, for speaking, for moving the hand, for moving the leg, for remembering, etc.

The diftenent centers wete discovered by noticing what happend when men's bains were injured by atikent. If one part was injured, the man could not speah, though he could hear, see and move. $1 i^{\prime}$ another part was iujured, he could not move, though he conld nee, hear and speak. In this way it has been found that in certain tracts of the brain the powess of memory, of sight, of hearing, ctc., reside.

How a particular spot in the brain makes us remember no one knows ; but it is certainly so, for if this part of the brain is injured we cannot remember anything; as long as it is not injured, we can.

Sleep. - Plenty of sound sleep is necessary to give the brain rest. Children need about ten hours sleep. Seven or eight are needed by grown-up persons. During sleep the muscles rest as well as the brain, the heart beats more slowly, the breath-
ing is more quiet, the temperature of the body is lower. The whole of your body does not go to sleep at one and the same time. First the eyes go to sleep, then the smell, then the taste, then the hearing, and last of all, the touch. When you wake your touch wakes first, then your hearing, tattr, smell and sight in that order.

Death.-Parts of our bodies are dying all the time : the outer skin, for instance. It dies atod is rubbed off. Parts are dying all the time and being revied all the tine; the blood-corpuscles, for instance. They lose theit oxygen, which is their life, but get now oxvgen trom :le lungs. A very bad burn kills the arm and it may withes and die, though the reato the body livenon very well whout at. 'lle whole body dies a natural death when the heart stops sendian goud hiend. or when the lungn stop breathing. So long as the beart and lomsa aredoing thes work the hody is alive. When they stop, whe thomeh distase or as the rosult of sume injury or violence, the hody dies.

Decomposition.-The body is bult up of chomicat elemsits. So long as it is alive the life within us (whatever that mas beno one knows) has the wonderful power of making each clement do some useful work in building up bene, mus cle, fat, in maling blood or tirsue. When the life is gone, when the body in dead, the chemical substances of which it is made go back to form parts of the earth from which they originally came. Atoms that once formed part of Jullus Cæsar's body were taken into the sotl and may now be part of the clay of some vase in a collection of Roman pottery, or they may stop a hole in some workman's cabin to keep the wind away as Shakspeare has aid:

> "Imperious Caesar, dead and turned to clay Might stop a hole to keep the wind fway:" Oh, that that earth, which kept the world in awe, Should patch a wall to expel the winter's flaw."

The Senses.-"The five senses" are sight, hearing, smell, taste, touch. There is at least one more
-the temperature-sense. You can tell whether a piece of iron is hotter than your hand without touching it and with your eyes shut. It is possible that birds and fish have special senses that men do not have. They seem to knon their way home in case: where men would be quite lont.

We Kinoz the Outsade World Through Our Senses. .- Things in the external world are known to un only through our senses. We see, hear and touch them. It we are blind or deai we know much less than we otherwise should know. The nerves of sight, hammo, tow h, bring messages from thangs in the world to war bain. ()ur brain thinks ahout the e meseages and decides what is to be done. If anything is to be done it sends messages to the muscles and they do it.

We often make wrong judgments about the messages that our senses send to the hraiin, ds is proved by the experiments on page 34^{6}. It is not certain, then, that we always know the outside world correctly. Any one of us is mach more certain about anything he hears or sees if he knows that some one else sees or hears it in the same way. The things in the outside world that we are most certain about are the ones that a very great number of people have seen and described a very great number of tinces.

Personality. - There is one thing that we know without asking anyone's help. Each one of us knows that he exists; that he is a person. So leng
as his mind and brain go on thinking, and reflecting about his thoughts. he is sure that he exists, any way. No other animal but man thinks about his own thoughts. A dog may notice that snow is white, besides being cold; that chalk is white, besides being hard; that milk is white, besides being good to drink. It is possible, though not liktly, that when he is thinking of milk to drink he may remember that milk is white. But no dog ever imagined such a thing as zuhiteness, nor thought that milk, chalk and snow, differem as they are in most respects, at least are alike m this one respect -namely of whiternes. Mose anmais are, iu a large degree, machines- they act without thinking about their att. Men also do many acts in a ma-chine-ike way. For instance if some one pretends to aim a blow at your eye, you wink you cannot help doing it-although you know wey well you are not going to be hit. If the inside lining of your nose is tickled with a feather you have to sneeze. You cannut help it any more than a locomotive can help going when the steam is turned on. When the stimulus (the exciting feather-touch) comes the action must follow. If an insect-eating plant is touched, even by a stick, it shuts its leaves with a snap. If an ayster feels amything Hoating wer its opein sheil it shuts up whether the thing is good for foud or not. If a fly lights on your forehead you brush it off even when you are asleep. You are like the lower animals in this machine-like
response to a stimulus. But you are very different from them in your power to think, to remember your thoughts and 10 reflect about them; in your power to know what is honorable, what is good, and what is right. That kind of knowledge makes you a person, and it makes you responsible. If you have such powers it is your duty to use them rightly. - Cclls.-.-If we keep on dividing any part of the body of an animal (or a plant) as long as possible we find, at last, that it is made of rells. A cell is a litite lom winh walks, filled on the inside with living pratoplasm (swocthing like the white of egg). The bones, the tissues, we muscles, the blood, the nerves are mate of omat wh. The smallest are about grob of an inch in diameter. Even the largest are very small. Each cell is alive, that is, the protoplasm inside it is alive. Many cells (as the white corpuscles oi j our blood - see page 327) can move and do grow by division just as the single-cellemanimal, the Amerba, moves and grows. ${ }^{1}$ Every such cell grows ; divides over and over again to make athers; by and by decays; and finally dies. While it is allise it does work of some kind and takes food. If it is a muscle-cell it helps to build up muscle. If it a tissue-cell it builds up tissue. Sometimes, in case of need, a cell will take up work not its owin. If, for instance, a muscle is injured, cissue cells will hejp to build it up.

The Human Budy is a Colony of Cclls. - The human body is something like a great colony or

[^6]ant-hill of different kinds of cells each one working to help the colony to live and prosper. Some cells make food, others carry it where it is needed (the blood-cells), others build up hones and muscles, others transmit messages (the nerve-cells). In the spinal-cord there are committees of cells (nervecenters) that manage all matters like breathing, sneezing, etc., without troubling the brain with such little things; and finally in the brain there are higher committees of cells (nerve-centers) each attending to its.own work. One brain-committee attends to hearing, another to seeing, another to touching, and other committees help us to remember, to make judgments, to be affectionate or angry. A tree is something like a colony of coral animals. ${ }^{1}$ The body of a man is a much more complicated colony - something like a great city with all kinds of persons in it, each kind doing one sort of useful work, and all working together to make the whole body healthy and strong.

The Ifuman Will Governs the Body. - Back of all this there is your personality; the thing, whatever it is, that makes you you and not someone else. This can decide what is right, and will to do it. It can wish to do right. It can try, and if it fails one time, it can keep on trying. Your hody, with all its wonderful arrangements, is, after all, of no special good uniess it is directed by a will that means to do right - to be true, brave and kind. It

[^7]is your business to have that kind of a will: it is the business of your body to do what you tell it to do. Secing: The Eyr.-

Fig. 314. How the image of an ohject is seen on the ground glas of a photegraphic camera. Rays of light from the arrow \rightarrow pash through the lens of the amera, through the dark , hamber, and make ais image (see Booh I., Astronomy, p. 12) on the ground glass.

Fit. 3 la. Hoss the image of at objott is scen on the back part of the eye (wn the ecina) Ray of light from the arrow \Rightarrow pass through the lens of the eye, through the dark chamber of the eyc and make an itwage on the retina. The retina is covered with nerves and these send mensages to the brain "I am touched by light-by light of surh a brightness and of such a color." The brain receives all these messages and makes up its mind what sort of a thing is seen. It is the brain that does the real seaing, not the gye. The cye only forms the image. The brain decides what it is.

Experiments - Wipe the tonguc dry and put a bit of sugar on the tip. It will not taste swect till the sugar is dissolved.

Take' two one-pound weights from a grocer's scales (both iron or both lead and of the same size). Heat one of them and leave the other one cold. The cold wcight will seem the heavier.

Draw on a white爱ard two squares of exactly the same size. Cover the surface of one of them with horizontal lines, and the surface of the outer with vertical lines. Which square looks the taller? Which the wider? (Try it.)

Draw two parallel lines :- - about a quarter of an inch apart. Cross one of them with short lines like this $\backslash \backslash \backslash$ and the other with lines like this $/ / / / /$. The lines will no longer seem to be parallel. (Try it.)

Close your left eye and look steadily with your right eye at the left-hand dot, holding the book about twelve inches distant. Both dots will be seen. Move the book slowly toward your eye, which must be kept steadily fixed on the smaller dot. The other dot will disappear. Bring the book nearer and it will reappear. (Try this several times.)

Fig. 316. Look at this picture and you will see that the white spaces at the corners of the black qquares seem to have dusky spots in them. Look closely at any one of the dusky spots and it will disappear.

Cross your siddle finger over your forefinger so as to leave a V-shaped space. between their unds. Ruh the ends of both fingers liglitly agdinst the very point ot your nuwe. It will feel as if there were two points (o) your nose. (Pry it several thmes.

A bit of ahy on the tip of the tongue thites sesur. in the back of the tongue swectish. (Tiy it.)

The experimphts just griven shew that your judgmeits about your sensations are not alwas right. The reasons for the mistakes of judgment are well known but need not ke given here.

Fig. 3:万. Draw two lines $A \%$ of the same length. Put arrow-heads on \boldsymbol{A} and arrow-tails on B. B will appear longer than A.

Hearing: The Ear.

Frg. 318 The Ear : M the shell of the ear; G external tube which carrles vibrating uir to the dram (T). This vibrates and sets the air of the inner ear, as well as its little bones, to vibrating. The vibrations are carried by the nerve A to a particular pary of the brain. It is the brain that does the real hearing, not thpear. R is a tube leading from each ear to the mbuth.

Smcll: the Nose. - The mucous membrane that lines the mostrils is the organ of smell. Nerves trom cach nastril run to the brain. A picee of compor is all the while giving off lime particles: Some of dex ie touch the ends of small rerves in the nostrils and other nerves cary the :ws to the brain. It is rectly ith larain thet does the smellinge, not the nowe.

Tastr: the Tougur.... Pine upp: de of the
 under which are nerees-..smbeth: , mes of touch, sometimes nerves of taste. Illo wothar put on the tongre these nerres tele ermblo in o brain. It is really the hrain that his : , hot the tengur. What we call tastes (flavor: are often not tastes but onelis. Hold your mostal light and chew a piect of conamom. You will !ne a hat
 (Try it.) Remember this when som have uediciness to take. Hold your nustrik tight shat. ...: in most cases you can mot taste what jou are sh amome.

[^0]: ${ }^{1}$ Pronounced gal- $1 \bar{e}^{\prime} \overline{0}$, He was born in Italy in $\mathbf{5}_{5} 6$, and died in 1642 .

[^1]: ${ }^{1}$ Do not put a cold thermometer suddenly into boiling water if you do not want to break it. Warm it at a fire betorehand.

[^2]: ${ }^{1}$ The ecientific names are resinour electricity and vitreons electricity: sealing-wax is made of reverif

[^3]: ${ }^{1}$ Buy for the school from the Western Electric Company, New York City, its Electric Bell outfit (complete) No. 9429, comprising a bell, one cell of Phenix Dry Battery, one bronze pushbuttong 75 feet of No. 18 annunciator wire and staples, for \$2.75.

[^4]: ${ }^{1}$ The life of a tree is more like the life of the colony of animals that make up a coral bank (sce page 246)

[^5]: ${ }^{1}$ Note to Teachers.-The sulject treated in this chapter is so important, and at the same time so difficult, that a number of fundamental matter are insisted upon, in variou places and in different manners, in order that the pupil may not fat to note their signoficance. Space is used in these repetitions that it is possible migh: bater frave been bestownd upon other topics which are passed over with slight mention, or omitted entirely. It is believed that the method adopted will prove itself to be the wise one, however. It is far better that the pupil should have a firm grasp on a few things, than a merely superficial acquaintance with many. The application of the principles here explained to the art of healthy living is hygiene. The exposition nf the laws of hygiene is hete left, to a very great degree, to the teacher, who should not fail to point out the injurious effects of stimulants and of tobacco upon the separate organs, upon the " general health, and upon the morale.

[^6]: Siee Book V1, Zoology, page $\mathbf{8 8}$.

[^7]: ${ }^{1}$ See Book VII, Botany, page 246 .

